K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2020

Đặt A = 35371 + 572016 + 922017

= 31342.4 . 33 + 574.504 + 924.504.92

= (34)1342.(..7) + (574)504 + (924)504.(...2)

= (...1)1342.(...7) + (...1)504 + (...6)504.(...2)

= (...1).(...7) + (...1) + (...6).(...2)

= (...7) + (...1) + (...2)

= (...0) \(⋮\)10 

Vậy \(A⋮\)10 (đpcm)

26 tháng 10 2018

a) 

\(5n+3⋮n+2\)

\(5n+10-7⋮n+2\)

\(5\left(n+2\right)-7⋮n+2\)

mà \(5\left(n+2\right)⋮n+2\Rightarrow7⋮n+2\)

\(\Rightarrow n+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta có bảng :

n+21-17-7
n-1-35-9

Vậy x = { -9; -3; -1; 5 }

29 tháng 10 2018

Đề ra là số tự nhiên mà không phải số nguyên âm làm đúng rồi bỏ nguyên âm đi là ok

14 tháng 11 2016

số trên sẽ có tổng các chữ số bằng 1

=>số 102017+2016 ko chia hết cho 3

14 tháng 11 2016

10^2017 có tổng các chữ số bằng 1

2016 có tổng các chữ số bằng 9

Mà 1+9=10 không chia hết cho 3 nên 10^2017+ không chia hết cho 3

3 tháng 1 2018

a, 10^2017+8 = 100....000+8 (2017 chữ số 0) = 100....008 (2016 chữ số 8) chia hết cho 8

Có : tổng các chữ số của 10^2017+8 = 1+0+0+....+0+0+8 = 9 chia hết cho 9 => 10^2017+8 chia hết cho 9

=> 10^2017+8 chia hết cho 72 ( vì 8 và 9 là 2 số nguyên tố cùng nhau )

=> ĐPCM

Tk mk nha

8 tháng 10 2016

A=7+72+73+...+72016

=(7+72)+(73+74)+...+(72015+72016)

=7.(1+7)+73.(1+8)+...+72015.(1+7)

=7.8+73.8+...+72015.8

=8.(7+73+...+72015) chia hết cho 8 (đpcm)

A=7+72+73+...+72016

=(7+72+73)+...+(72014+72015+72016)

=7.(1+7+72)+...+72014.(1+7+72)

=7.57+...+72014.57

=57.(7+...+72014) chia hết cho 57 (đpcm)

23 tháng 12 2016

10^2017+10^2016+10^2015

=10^2015.(10^2+10+1)=10^2015.111

=10^2014.10.111=10^2014.2.5.111=10^2014.2.555 chia hết cho 555 

31 tháng 12 2016

10^2017 + 10^2016 + 10^2015

= 10^2015(10^2+10+1)

= 10^2015.111

= 10^2014.10.111

= 10^2014.2.5.111

= 10^2014.2.555

mà 555 chia hết cho 555

<=> 10^2014.2.555 chia hết 555

vậy( 10^2017 +- 10^2016 + 10^2015) chia hết cho 555

17 tháng 11 2016

10 chia 3 du 1=> 10^2017 chia 3 du 1

2016 chia het cho 3 => dpcm 

16 tháng 12 2016

​ta không quan tâm đến số mũ (tại vì cả ba đều cùng số mũ là 2017)​​

​vì 2016+2015+2009 bằng 6040 mà 6040 lại chia hết cho 10

​suy ra 2016^2017+2015^2017+2009^2017 chia hết cho 10 (điều cần chứng minh)

16 tháng 12 2016

\(2016^{2017}\)có tận cùng =6

\(2015^{2017}\)có tận cùng =5

\(2009^{2017}\)có tận cùng =9

(6+5+9)=20=> A chia hết cho 10 

{lập luận @ .. không quan tâm đến mũ là sai? bạn thử  thay số là số chẵn xem xe biết}

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!