K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

ai giup minh di

5 tháng 4 2019

mk ko bt

26 tháng 6 2016

Bài này lớp 6 chưa làm được

29 tháng 6 2016

\(\frac{a}{b}\)=\(\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\)\(\left[\frac{a-b}{c-d}\right]^4=\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{a^4+b^4}{c^4+d^4}\)

mình làm như vây đúng ko

nếu đúng thì

22 tháng 5 2017

như câu trả lời của bạn Phuc Tran

4 tháng 5 2015

Ta có: 1/4+1/5+...+1/10>1/10.7=7/10

1/11+1/12+...+1/19>1/20.9=9/20

Kết hợp lại ta có B= 1/4+1/5+1/6+...+1/19>7/10+9/20=23/20>1.Vậy B>1

13 tháng 4 2018

ta co 1/4+1/5+......+1/10>1/10.7=7/10

1/11+1/12+.....1/19>1/20.9=9/20

kết hợp lại ta có mB=1/4+1/5+1/6+......1/19>7/10+9/20=23/20>1 vậy B>1

5 tháng 8 2016

\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}\)\(=\frac{a+b+c+d}{a+b+c}\)

Do a + b + c + d khác 0 nên: b+c+d = a+c+d = a+b+d = a+b+c  => a = b = c = d

\(\Rightarrow A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)\(\left(a=b=c=d\right)\)

\(\Rightarrow A=1+1+1+1=4\)

4 tháng 6 2017

ta nhân lần lượt a,b,c,d vào biểu thức ban đầu , được

\(\hept{\begin{cases}\frac{a^2}{b+c+d}+\frac{ba}{a+c+d}+\frac{ac}{a+b+d}+\frac{ad}{a+b+c}=a\left(1\right)\\\frac{ab}{b+c+d}+\frac{b^2}{a+c+d}+\frac{cb}{a+b+d}+\frac{db}{a+b+c}=b\left(2\right)\end{cases}}\)

\(\hept{\begin{cases}\frac{ac}{b+c+d}+\frac{bc}{c+a+d}+\frac{c^2}{a+b+d}+\frac{dc}{a+b+c}=c\left(3\right)\\\frac{ad}{b+c+d}+\frac{bd}{a+c+d}+\frac{cd}{a+b+d}+\frac{d^2}{a+b+c}=d\left(4\right)\end{cases}}\)

Lấy (1)+(2)+(3)+(4) ta có :

\(\left(\frac{a^2}{b+c+d}+\frac{b^2}{a+c+d}+\frac{c^2}{a+b+d}+\frac{d^2}{a+b+c}\right)+\frac{ab+bc+bd}{c+d+a}+\frac{ac+bc+cd}{d+a+b}\)

\(+\frac{ad+bd+cd}{a+b+c}+\frac{ab+ac+ad}{b+c+d}=a+b+c+d\)

\(< =>A+\frac{b\left(c+d+a\right)}{c+d+a}+\frac{d\left(a+b+c\right)}{a+b+c}+\frac{c\left(b+d+a\right)}{b+d+a}+\frac{a\left(c+b+d\right)}{c+b+d}=a+b+c+d\)

\(< =>A+a+b+c+d=a+b+c+d=>A=0\)

Vậy \(A=\frac{a^2}{b+c+d}+\frac{b^2}{a+c+d}+\frac{c^2}{a+b+d}+\frac{d^2}{a+b+c}=0\)

11 tháng 7 2019

#)Giải :

Ta có :

\(\frac{a}{b}=\frac{3}{5}\Rightarrow5a=3b\Rightarrow a=b.\frac{3}{5}=\frac{3b}{5}\)

\(\frac{b}{c}=\frac{4}{7}\Rightarrow7b=4c\Rightarrow b=c.\frac{4}{7}=\frac{4c}{7}\)

\(\frac{c}{d}=\frac{6}{11}\Rightarrow11c=6d\Rightarrow c=d.\frac{6}{11}=\frac{6d}{11}\)

\(\hept{\begin{cases}\left(3;5\right)=1\Rightarrow b⋮5\\\left(4;7\right)=1\Rightarrow c⋮7\\\left(6;11\right)=1\Rightarrow d⋮11\end{cases}}\)

Mà b,c,d nhỏ nhất \(\Rightarrow\) b = 5; c = 7; d = 11

\(\Rightarrow a=\frac{3b}{5}=\frac{3.5}{5}=3\)

Vậy a = 3; b = 5; c = 7; d = 11

11 tháng 7 2019

@ Pen @ Nếu b=5; c=7

=> \(\frac{b}{c}=\frac{5}{7}\ne\frac{4}{7}\) trái với đề bài rồi em.

Bài giải:

Với \(\frac{a}{b}=\frac{3}{5}\) Đặt \(a=3k;b=5k\),\(k\inℕ^∗\) (1)

\(\frac{b}{c}=\frac{4}{7}\) Đặt \(b=4l;c=7l\left(l\inℕ^∗\right)\) (2)

\(\frac{c}{d}=\frac{6}{11}\)Đặt \(c=6h;d=11h\left(h\inℕ^∗\right)\) (3)

Từ (1) ; (2) => b chia hết cho 4 và chia hết cho 5  mà (4;5)=1 => b chia hết cho 20 => Đặt: b=20m

Từ (2); (3) => c chia hết cho 6 và chia hết cho 7 mà (6;7)=1 => c chia hết cho 42 => Đặt:  c=42n

Theo bài ra \(\frac{b}{c}=\frac{4}{7}\Rightarrow\frac{20m}{42n}=\frac{4}{7}\Rightarrow\frac{m}{n}=\frac{4}{7}:\frac{20}{42}=\frac{6}{5}\)

Do b, c nhỏ nhất => m, n nhỏ nhất => Chọn m=6, n=5

=> b=20.6=120; c=42.5=210

=> k=b:5=120:5=24 => a=3k=3.24=72

h=c:6=35=> d=11h=385

Vậy a=72; b=120; c=210; d=385