K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2019

CÁI NÀY mk lm rồi

22 tháng 9 2019

x^2+2xy+y^2=10

x^2+y^2=10-2xy

30 tháng 5 2020

A = \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(=\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}=\frac{1}{2}\left[\left(x+y\right)+\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2\)

\(\ge\frac{1}{2}\left[\left(x+y\right)+\frac{4}{x+y}\right]^2=\frac{1}{2}\left(1+4\right)^2=\frac{25}{2}\)

Dấu "=" xảy ra <=> x = y =1/2

Vậy GTNN của A = 25/2 tại x = y = 1/2

1 tháng 6 2020

Ta có :

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(=x^2+\frac{1}{x^2}+2+y^2+\frac{1}{y^2}+2\)

\(=4+\left(x^2+y^2\right)+\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\)

\(\ge4+\frac{\left(x+y\right)^2}{2}+2\sqrt{\frac{1}{\left(xy\right)^2}}\)

\(=4+\frac{1}{2}+\frac{2}{xy}\ge4+\frac{1}{2}+\frac{2}{\frac{\left(x+y\right)^2}{4}}=4+\frac{1}{2}+8=\frac{25}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy \(A_{min}=\frac{25}{2}\) tại \(x=y=\frac{1}{2}\)

7 tháng 3 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(1+\frac{1}{x}+1+\frac{1}{y}\right)^2}{2}=\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)(1)

Lại có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{1}=4\)(2)

Từ (1) và (2) => \(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)

Đẳng thức xảy ra <=> x = y = 1/2

Vậy MinA = 18 

10 tháng 5 2019

Chứng minh BĐT phụ:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

Giờ thì chứng minh thôi:3

Áp dụng BĐT Cauchy-schwarz dạng engel ta có:

\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(2x+2y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}\)

\(=8\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)

Vậy \(P_{min}=8\Leftrightarrow x=y=\frac{1}{2}\)

26 tháng 5 2019

Bài này bạn làm đúng rồi nhưng mà bạn bị nhầm phép tính: \(\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}=18\)

=> Min P=18

AH
Akai Haruma
Giáo viên
31 tháng 10 2018

Lời giải:

Từ \(xy+x+y=1\Rightarrow \left\{\begin{matrix} x^2+1=x^2+xy+x+y=x(x+y)+(x+y)=(x+1)(x+y)\\ y^2+1=y^2+xy+x+y=y(x+y)+(x+y)=(y+1)(x+y)\end{matrix}\right.\)

\(xy+x+y=1\Rightarrow x(y+1)+(y+1)=2\Rightarrow (x+1)(y+1)=2\)

Do đó:

\(x\sqrt{\frac{2(y^2+1)}{x^2+1}}+y\sqrt{\frac{2(x^2+1)}{y^2+1}}+\sqrt{\frac{(x^2+1)(y^2+1)}{2}}\)

\(=x\sqrt{\frac{(x+1)(y+1)(y+1)(x+y)}{(x+1)(x+y)}}+y\sqrt{\frac{(x+1)(y+1)(x+1)(x+y)}{(y+1)(x+y)}}+\sqrt{\frac{(x+1)(x+y)(y+1)(x+y)}{(x+1)(y+1)}}\)

\(=x\sqrt{(y+1)^2}+y\sqrt{(x+1)^2}+\sqrt{(x+y)^2}\)

\(=x(y+1)+y(x+1)+x+y=2xy+2x+2y=2(xy+x+y)=2.1=2\)

31 tháng 10 2018

Tick cái nhẹ cho cô loạn thông báo :))