Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(1+\frac{1}{x}+1+\frac{1}{y}\right)^2}{2}=\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)(1)
Lại có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{1}=4\)(2)
Từ (1) và (2) => \(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)
Đẳng thức xảy ra <=> x = y = 1/2
Vậy MinA = 18
CHo x,y > 0, x + y = 1. Tìm GTNN của \(S=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(S\ge\frac{1}{2}\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+y+\frac{4}{x+y}\right)^2=\frac{1}{2}\left(1+4\right)^2=\frac{25}{2}\)
\(S_{min}=\frac{25}{2}\) khi \(x=y=\frac{1}{2}\)
Cần điều kiện x;y dương
\(M=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2\)
\(M\ge\frac{1}{2}\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+y+\frac{4}{x+y}\right)^2=\frac{25}{2}\)
\(M_{min}=\frac{25}{2}\) khi \(x=y=\frac{1}{2}\)
\(A\)xác định \(\Leftrightarrow x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\ne0\)
\(\Leftrightarrow x^2y^2+1+x^2-x^2y-y+y^2\ne0\)
\(\Leftrightarrow\left(x^2y^2+y^2\right)+\left(x^2+1\right)-\left(x^2y+y\right)\ne0\)
\(\Leftrightarrow y^2\left(x^2+1\right)+\left(x^2+1\right)-y\left(x^2+1\right)\ne0\)
\(\Leftrightarrow\left(x^2+1\right)\left(y^2-y+1\right)\ne0\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\)
Ta có: \(\hept{\begin{cases}x^2+1>0\forall x\\\left(y-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall y\end{cases}}\)\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]>0\forall x;y\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\forall x;y\)
\(\Leftrightarrow A\ne0\forall x;y\)
Chứng minh BĐT phụ:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
Giờ thì chứng minh thôi:3
Áp dụng BĐT Cauchy-schwarz dạng engel ta có:
\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(2x+2y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}\)
\(=8\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)
Vậy \(P_{min}=8\Leftrightarrow x=y=\frac{1}{2}\)
Bài này bạn làm đúng rồi nhưng mà bạn bị nhầm phép tính: \(\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}=18\)
=> Min P=18
a,
Có : 1/x + 1/y >= 4/x+y = 4/1 = 4
Dấu "=" xảy ra <=> x=y=1/2
Vậy ..............
b, Áp dụng bđt sovac ta có :
a^2/x + b^2/y >= (a+b)^2/x+y = (a+b)^2 >= 0
Dấu "=" xảy ra <=> x=y=1/2 và a=-b
Vậy ..............
Tk mk nha
câu c áp dụng \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\) và \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)bạn tự giải nhá.
xin nhá xin nhá =))
Áp dụng bất đẳng thức Cauchy-Schwarz và giả thiết x+y=1 ta có :
\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}=\frac{\left[2\left(x+y\right)+\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2}{2}\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+4\right)^2}{2}=18\)
Đẳng thức xảy ra <=> x=y=1/2
Vậy ...
A = \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(=\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}=\frac{1}{2}\left[\left(x+y\right)+\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2\)
\(\ge\frac{1}{2}\left[\left(x+y\right)+\frac{4}{x+y}\right]^2=\frac{1}{2}\left(1+4\right)^2=\frac{25}{2}\)
Dấu "=" xảy ra <=> x = y =1/2
Vậy GTNN của A = 25/2 tại x = y = 1/2
Ta có :
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(=x^2+\frac{1}{x^2}+2+y^2+\frac{1}{y^2}+2\)
\(=4+\left(x^2+y^2\right)+\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(\ge4+\frac{\left(x+y\right)^2}{2}+2\sqrt{\frac{1}{\left(xy\right)^2}}\)
\(=4+\frac{1}{2}+\frac{2}{xy}\ge4+\frac{1}{2}+\frac{2}{\frac{\left(x+y\right)^2}{4}}=4+\frac{1}{2}+8=\frac{25}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy \(A_{min}=\frac{25}{2}\) tại \(x=y=\frac{1}{2}\)