K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2021

a) Áp dụng bất đẳng thức Cosi ta có :

\(x^2+1\geq 2x\\ 4y^2+1\geq 4y\\ 9z^2+1\geq 6z\)

Suy ra \(S\leq 6\)

Dấu = xảy ra khi \(x=1;y=\frac{1}{2}; z=\frac{1}{3}\)

 

NV
2 tháng 9 2021

\(P-\dfrac{5}{2}=x+2y-\dfrac{x^2+y^2}{2}=-\dfrac{1}{2}\left(x-1\right)^2-\dfrac{1}{2}\left(y-2\right)^2+\dfrac{5}{2}\le\dfrac{5}{2}\)

\(\Rightarrow P-\dfrac{5}{2}\le\dfrac{5}{2}\Rightarrow P\le5\)

\(P_{max}=5\) khi \(\left(x;y\right)=\left(1;2\right)\)

3 tháng 9 2021

Cảm ơn nhiều ạ !

7 tháng 11 2016

P = x6 + y6 = (x2 + y2)(x4 - x2 y2 + y4

= (x2 + y2)2 - 3x2 y2 \(\ge1-3×\frac{\left(x^2+y^2\right)^2}{4}=1-\frac{3}{4}=\frac{1}{4}\)

Đạt được khi x2 = y2 = \(\frac{1}{2}\)

10 tháng 12 2017
làm ra (x^2+y^2)^2-3.x^2.y^2 rùi ko bt
6 tháng 6 2016

\(\Rightarrow\left(x-3\right)^2-4+y^2=0\)

x=3 

y=2

P=13

6 tháng 6 2016

x^2+y^2-6x+5=0

<=>x^2-6x+9+y^2-4=0

<=> (x-3)^2+(y^2-4)=0

<=> (x-3)^2=0 hoặc y^2-4=0

<=> x=3 và y=-2;2

ta có P=x^2+y^2=3^2+2^2=13>=13

Max P=13 <=> x=3;y=-2;2