Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\left(1\right)\)
\(\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\left(2\right)\)
Từ (1) và (2) suy ra:\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau ta đc:
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=-\frac{15}{5}=-3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{9}=-5\\\frac{y}{7}=-5\\\frac{z}{3}=-5\end{cases}\Rightarrow\hept{\begin{cases}x=-45\\y=-35\\z=-15\end{cases}}}\)
Ta có:
\(\frac{x}{y}=\frac{9}{7}\)=> \(\frac{x}{9}=\frac{y}{7}\)(1)
\(\frac{y}{z}=\frac{7}{3}\)=>\(\frac{y}{7}=\frac{z}{3}\)(2)
Từ (1) (2)
=>\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=-\frac{15}{5}=-3\)
=>\(\frac{x}{9}=-3\)=>x=-27
\(\frac{y}{7}=-3\)=>y=-21
\(\frac{z}{3}=-3\)=>z=-9
Vậy x=-27 ; y=-21 ; z=-9
tìm x,y,z thuộc Q biết :
a)x(x-y+z)=-11
y(y-z-x)=25
z(z+x-y)=35
b)(c+2) mũ 2+(y-3) mũ 4 +(z-5) mũ 6 =0
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{2}=k\)
\(\Rightarrow x=3k;y=4k;z=2k\)
Mà \(x^3-y^3+z^3=-29\)
\(\Rightarrow\left(3k\right)^3-\left(4k\right)^3+\left(2k\right)^3=-29\)
\(\Rightarrow27k^3-64k^3+8k^3=-29\)
\(\Rightarrow-29k^3=-29\)
\(\Rightarrow k^3=1\)
\(\Rightarrow k=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=2\end{matrix}\right.\)
#DatNe
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=>\left\{{}\begin{matrix}x=\dfrac{5y}{7}\\z=\dfrac{3y}{7}\end{matrix}\right.\) thay x,z vào \(x^2+y^2-z^2=585\)
\(=>\left(\dfrac{5y}{7}\right)^2+y^2-\left(\dfrac{3y}{7}\right)^2=585=>y=\pm21\)
\(=>\left\{{}\begin{matrix}x=\dfrac{5.(\pm21)}{7}=\pm15\\z=\dfrac{3\left(\pm21\right)}{7}=\pm9\end{matrix}\right.\)
vậy (x,y,z)\(\in\left\{\left(15;21;9\right)\left(-15;-21;-9\right)\right\}\)
Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+3y^2-z^2}{4+27-25}=\frac{22}{6}=\frac{11}{3}\)
\(\Rightarrow x^2=\frac{44}{3}\Rightarrow x=\frac{2\sqrt{11}}{\sqrt{3}}=\frac{2\sqrt{33}}{3}\)
\(\Rightarrow y^2=\frac{99}{3}=33\Rightarrow y=\sqrt{33}\)
\(\Rightarrow z^2=\frac{275}{3}\Rightarrow z=\frac{5\sqrt{33}}{3}\)