K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2016

P=2(x^2+6xy)/(1+2xy+2y^2) 
=2(x^2+6xy)/(x^2+2xy+3y^2) 
*y=0=>P=2 
*y#0: 
Chia cả tử và mẫu của P cho y^2. 
Đặt x/y=a,ta có: 
P=2(a^2+6a)/(a^2+2a+3) 
<=>(P-2)a^2+2(P-6)a+3P=0 
∆'=(P-6)^2-3P(P-2) 
=-P^2-3P+18>=0 
<=>(P+6)(P-3)=<0 
<=>-6=<P=<3 

Vậy maxP=3<=>x/y=3 và x^2+y^2=1<=>x=±3/2;y=±1/2 
MinP=-6<=>x/y=-3/2 và x^2+y^2=1<=>x=±1/√13;y=-+2/√13 

6 tháng 6 2015

Đặt \(a=x^2;b=y^2\left(a;b\ge0\right)\)

\(A=\frac{\left(a-b\right)\left(1-ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)

\(\left|A\right|=\frac{\left|\left(a-b\right)\left(1-ab\right)\right|}{\left(1+a\right)^2\left(1+b^2\right)}\le\frac{\left(a+b\right)\left(1+ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)

\(\left(1+a\right)\left(1+b\right)=\left(a+b\right)+\left(1+ab\right)\ge2\sqrt{\left(a+b\right)\left(1+ab\right)}\)

\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\ge4\left(a+b\right)\left(1+ab\right)\)

\(\Rightarrow\left|A\right|\le4\)

\(\Rightarrow-4\le A\le4\)

\(A=-4\Leftrightarrow a=0;b=1\Leftrightarrow x=0;y=+1or-1\)

\(A=4\Leftrightarrow a=1;b=0\Leftrightarrow x=+-1;y=0\)

Vậy \(MinA=-4;MaxA=4\)

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Lời giải:

Nếu $y=0$ thì $x^2=1$. Khi đó $P=2$

Nếu $y\neq 0$. Đặt $\frac{x}{y}=t$ thì:

$P=\frac{2(x^2+6xy)}{x^2+2xy+3y^2}=\frac{2(t^2+6t)}{t^2+2t+3}$

$P(t^2+2t+3)=2t^2+12t$

$t^2(P-2)+2(P-6)t+3P=0$

$\Delta'=(P-6)^2-3P(P-2)\geq 0$

$\Leftrightarrow (P-3)(P+6)\leq 0$

$\Leftrightarrow -6\leq P\leq 3$ nên $P_{\max}=3$
Vậy $P_{\max}=3$
Giá trị này đạt tại $(x,y)=(\frac{3}{\sqrt{10}}; \frac{1}{\sqrt{10}})$ hoặc $(\frac{-3}{\sqrt{10}}; \frac{-1}{\sqrt{10}})$

 

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

(2) có nghiệm khi Delta' lớn hơn hoặc bằng 0

Hơn nữa, công thức Delta' của em bị nhầm.

16 tháng 3 2020

https://olm.vn/hoi-dap/detail/221163930084.html

cậu tìm link này nhé . mình đã trả lời câu này cho 1 bạn r . 

học giỏi