K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2017

Đặt x + y = t

=> A = t + 1

Ta có: x2+2xy+7(x+y)+2y2+10=0

<=> (x2 + 2xy + y2) + 7(x + y) + 10 + y2 = 0

<=> (x + y)2 + 7(x + y) + 10 = - y2

<=> t2 + 7t + 10 = - y2 \(\le\)0

<=> \(-5\le t\le-2\)

<=> \(-4\le t+1\le-1\)

<=> \(-4\le A\le-1\)

Vậy GTLN là A = - 1dấu bằng xảy ra khi x = - 2, y = 0; GTNN là A = - 4 dấu bằng xảy ra khi x = - 5, y = 0

4 tháng 1 2017

'=Bài 3:

\(Y=\left(x^{100}+1+1+1+1+1+1+1+1+1\right)-10x^{10}+1\)

Áp dụng BĐT Cauchy cho 10 số không âm ta có:

\(x^{100}+1+1+1+1+1+1+1+1+1\ge10\sqrt{x^{100}}=10x^{10}\)

\(Y\ge10x^{10}-10x^{10}+1=1\)

\(\Rightarrow maxY=1\)

Dấu "=" xảy ra\(\Leftrightarrow x^{100}=1\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

30 tháng 4 2020

Ta có :

\(A=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)

\(=\left|x-y\right|+\left|y-z\right|+\left|z-x\right|\)

không mất tính tổng quát, giả sử \(0\le z\le y\le x\le3\)

Khi đó : A = x - y + y - z + x - z = 2x - 2z

vì \(0\le z\le x\le3\)nên : \(2x\le6;-2z\le0\Rightarrow2x-2z\le6\)

\(\Rightarrow A\le6\)

Vậy GTNN của A là 6 khi x = 3 ; z = 0 và y thỏa mãn \(0\le y\le3\)và các  hoán vị

6 tháng 6 2015

Đặt \(a=x^2;b=y^2\left(a;b\ge0\right)\)

\(A=\frac{\left(a-b\right)\left(1-ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)

\(\left|A\right|=\frac{\left|\left(a-b\right)\left(1-ab\right)\right|}{\left(1+a\right)^2\left(1+b^2\right)}\le\frac{\left(a+b\right)\left(1+ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)

\(\left(1+a\right)\left(1+b\right)=\left(a+b\right)+\left(1+ab\right)\ge2\sqrt{\left(a+b\right)\left(1+ab\right)}\)

\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\ge4\left(a+b\right)\left(1+ab\right)\)

\(\Rightarrow\left|A\right|\le4\)

\(\Rightarrow-4\le A\le4\)

\(A=-4\Leftrightarrow a=0;b=1\Leftrightarrow x=0;y=+1or-1\)

\(A=4\Leftrightarrow a=1;b=0\Leftrightarrow x=+-1;y=0\)

Vậy \(MinA=-4;MaxA=4\)

5 tháng 5 2016

P=2(x^2+6xy)/(1+2xy+2y^2) 
=2(x^2+6xy)/(x^2+2xy+3y^2) 
*y=0=>P=2 
*y#0: 
Chia cả tử và mẫu của P cho y^2. 
Đặt x/y=a,ta có: 
P=2(a^2+6a)/(a^2+2a+3) 
<=>(P-2)a^2+2(P-6)a+3P=0 
∆'=(P-6)^2-3P(P-2) 
=-P^2-3P+18>=0 
<=>(P+6)(P-3)=<0 
<=>-6=<P=<3 

Vậy maxP=3<=>x/y=3 và x^2+y^2=1<=>x=±3/2;y=±1/2 
MinP=-6<=>x/y=-3/2 và x^2+y^2=1<=>x=±1/√13;y=-+2/√13