Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x+2y=1
=> x=1-2y
Thay x=1-2y vào biểu thức A
Ta có: A=(1-2y)2+2y2
A=(2x-1)2 >= 0, dấu = xảy ra <=> x=1/2
Vậy min A = 0 <=> x=1/2 và y=1/4
\(T=x^2+2xy+2y^2-2x-2y-2\)
\(=\left(x^2+2xy+y^2-2x-2y+1\right)+y^2-3\)
\(=\left(x+y-1\right)^2+y^2-3\ge-3\)
Đẳng thức xảy ra khi \(\begin{cases}\left(x+y-1\right)^2=0\\y^2=0\end{cases}\)\(\Rightarrow\begin{cases}x+y-1=0\\y=0\end{cases}\)
\(\Rightarrow\begin{cases}x+0-1=0\\y=0\end{cases}\)\(\Rightarrow\begin{cases}x=1\\y=0\end{cases}\)
Vậy \(Min_T=-3\) khi \(\begin{cases}x=1\\y=0\end{cases}\)
d= x2 + 5y2 + 2xy - 2y + 2005
d= x2 + 2xy + y2 + 4y2 - 2y + \(\frac{1}{4}+\)
d= ( x+ y )2 + ( 2y - \(\frac{1}{2}\))2 + \(\frac{8019}{4}\)\(\ge\)\(\frac{8019}{4}\)
dmin= \(\frac{8019}{4}khi\hept{\begin{cases}y=\frac{1}{4}\\x=-y=\frac{-1}{4}\end{cases}}\)
\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
Ta có: \(2x+\frac{1}{x}\ge2\sqrt{2x+\frac{1}{x}}=2\sqrt{2}\)
\(\Rightarrow\left(2x+\frac{1}{x}\right)^2\ge8\)
\(\Rightarrow\left(2y+\frac{1}{y}\right)^2\ge8\)
Dấu \("="\) xảy ra \(\Leftrightarrow x=y=\pm\frac{1}{2}\)
Vậy \(P_{min}=16\Leftrightarrow x=y=\pm\frac{1}{2}\)
A= (x2 +2x +1) +(y2+2y+1) +(z2+2z+1) -3
=(x+1)2 +(y+1)2 +(z+1)2 -3 >/ -3
A min = -3 khi x =y=z = -1