Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(N\left(x\right)=x^{2017}-2018x^{2016}+2018x^{2015}-...-2018x^2+2018x-1\)
\(=x^{2017}-2018\left(x^{2016}-x^{2015}+...+x^2-x\right)-1\)
\(\Rightarrow N\left(2017\right)=2017^{2017}-2018\left(2017^{2016}-2017^{2015}+...+2017^2-2017\right)-1\)
Đặt \(A=2017^{2016}-2017^{2015}+...+2017^2-2017\)
\(\Rightarrow2017A=2017^{2017}-2017^{2016}+...+2017^3-2017^2\)
\(\Rightarrow2018A=2017^{2017}-2017\)
\(\Rightarrow A=\dfrac{2017^{2017}-2017}{2018}\)
\(\Rightarrow N\left(2017\right)=2017^{2017}-2018.\dfrac{2017^{2017}-2017}{2018}-1\)
\(=2017^{2017}-\left(2017^{2017}-2017\right)-1\)
\(=2017^{2017}-2017^{2017}+2017-1\)
\(=2016\)
Vậy N(2017) = 2016
Do x=2017 nên x+1=2018
Với x+1=2018 thì y trở thành
y= x5-(x+1).x4+(x+1).x3-(x+1).x2+(x+1).x-1
= x5- x5-x4+x4+x3-x3-x2+x-1=x-1
Với x=2017, giá trị biểu thức f(x) là
f(2017)=2017-1=2016
Vậy ...