K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2020

\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(xy+yz+zx\right)^2}{6x^2y^2z^2}\le\frac{\left(x^2+y^2+z^2\right)^2}{6x^2y^2z^2}=\frac{3}{2}\)

dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=1\)

16 tháng 6 2020

mình nhầm :) làm lại nhé

\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}{6xyz}\le\frac{xy+yz+zx}{2xyz}\le\frac{x^2+y^2+z^2}{2xyz}=\frac{3}{2}\)

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

16 tháng 6 2015

với x,y dương, áp dụng bđt cosi ta có:

 \(x^4+y^2\ge2\sqrt{x^4.y^2}=2x.xy=2x\left(xy=1\right)\Rightarrow\frac{x}{x^4+y^2}\le\frac{x}{2x}=\frac{1}{2}\)

tương tự thì: \(\frac{y}{x^2+y^4}\le\frac{1}{2}\)

=> (gọi là A đi ): \(A\le\frac{1}{2}+\frac{1}{2}=1\Leftrightarrow x=y=1\)

19 tháng 12 2021

Cho \(xy=1\)và \(x,y>0\)

Tìm \(M_{max}=\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)

\(M=\frac{x}{x^4+\frac{1}{x^2}}+\frac{x}{y^2+\frac{1}{y^2}}\)

\(M=\frac{x^4}{x^6+1}+\frac{y^3}{y^6+1}\)

Áp dụng BĐT Cauchy

\(x^6+1\ge2x^3=>\frac{x^2}{x^6+1}\le\frac{1}{2}\)

Tương tự \(\frac{y^3}{y^6+1}\le\frac{1}{2}\)

\(=>M\le1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}xy=1\\x=1\\y=1\end{cases}}\Leftrightarrow x=y=1\)

Vậy \(M_{max}=1\)khi \(x=y=1\)

Áp dụng bđt AM-GM ta có

\(x^4+y^2\ge2x^2y\)

\(x^2+y^4\ge2xy^2\)

\(\Rightarrow M\le\frac{x}{2x^2y}+\frac{y}{2xy^2}=\frac{1}{2xy}+\frac{1}{2xy}=\frac{1}{xy}=1\)

Dấu "=" xảy ra khi \(x=y=1\)

Vậy..........

30 tháng 1 2020

Theo đề bài ta có:

\(2\left(y^2+1\right)+6\ge\left(x^4+1\right)+\left(y^4+4\right)+\left(z^4+1\right)\ge2x^2+4y^2+2z^2\)

\(\Rightarrow0< x^2+y^2+z^2\le4\)

Đặt: \(t=x^2+y^2+z^2.Đkxđ:0< t\le4\)

Ta có: \(\sqrt{2}\left(x+y\right)y=\sqrt{2x}y+\sqrt{2z}y\le\frac{2x^2+y^2}{2}+\frac{2z^2+y^2}{2}=x^2+y^2+z^2\)

\(P\le x^2+y^2+z^2+\frac{1}{x^2+y^2+z^2+1}=t+\frac{1}{t+1}=f\left(t\right)\)

Xét hàm: \(f\left(t\right)=t+\frac{1}{t+1}\) liên tục trên \(\left(0;4\right)\) 

\(f'\left(t\right)=1-\frac{1}{\left(t+1\right)^2}>0\forall t\in\left\{0;4\right\}\)nên:

\(\Rightarrow f\left(t\right)\) đồng biến trên \(\left\{0;4\right\}\)

\(\Rightarrow P\le f\left(t\right)\le f\left(4\right)=\frac{21}{5}\forall t\in\left(0;4\right)\)

\(\Rightarrow P_{Min}=\frac{21}{5}\Leftrightarrow\orbr{\begin{cases}x=z=1\\y=\sqrt{2}\end{cases}}\)

Vậy ....................

ミ★๖ۣۜBăηɠ ๖ۣۜBăηɠ ★彡

có cách nào không dùng hàm k ???