Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=x+2y =>x=M-2y
(M-2y)2+2.(M-2y).y+3.y2=6
3.y2-2My+M2-6=0
Pt có nghiệm khi \(\Delta'\ge0\\ M^2-3.\left(M^2-6\right)\ge0\\ -2M^2+18\ge0\\ M^2\le9\\ \)
\(-3\le M\le3\)
1/ Điều kiện: x>=2009.
Ta có: \(y=x-2\sqrt{x-2009}=\left(x-2009\right)-2\sqrt{x-2009}+1+2008.\)
=> \(y=\left(\sqrt{x-2009}-1\right)^2+2008\)
Do \(\left(\sqrt{x-2009}-1\right)^2\ge0\) => \(y=\left(\sqrt{x-2009}-1\right)^2+2008\ge2008\)(Với mọi x>=2009)
GTNN của y là: y=2008
Đạt được khi \(\left(\sqrt{x-2009}-1\right)^2=0\) <=> x-2009=1 <=> x=2010
2/ Ta có: x+y=6 => y=6-x. Đặt A=x2y
=> A=x2y=x2(6-x)=6x2-x3 = x(6x-x2)=x(9-9+6x-x2)=x[9-(x2-6x+9)] =x[9-(x-3)2]
Do x>0 và (x-3)2 >=0 => A đạt giá trị lớn nhất khi (x-3)2=0 <=> x=3
=> GTLN của A=x2y là 3.9=27 Đạt được khi x=y=3
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t
1)Đặt \(\sqrt{x-2014}=t\left(t\ge0;x\ge2014\right)\Rightarrow x=t^2+2014\)
Ta có y = \(t^2+2014-2t=\left(t-1\right)^2+2013\ge2013\)
Vậy miny = 2013 khi t = 1 <=> x = 2015
2) CM BĐT : \(abc\le\frac{\left(a+b+c\right)^3}{27}\). ( với a ; b ;c >0 ) (1)
Áp dụng bđt cô si với ba số không âm ta có :
\(a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow\left(a+b+c\right)^3\ge27abc\Leftrightarrow abc\le\frac{\left(a+b+c\right)^3}{27}\)
Dấu '' = '' xảy ra khi a = b= c . BĐT đc chứng minh
Áp dụng BĐT (1) ta có :
\(x^2y=4\cdot\frac{1}{2}x\cdot\frac{1}{2}x\cdot y\le4\cdot\frac{\left(\frac{1}{2}x+\frac{1}{2}x+y\right)^3}{27}=4\cdot\frac{6^3}{27}=32\)
VẬy GTLN của x^2y là 32 khi \(\frac{1}{2}x=y\) và x + y = 6 <=> x = 4 và y = 2
Đặt x + y = t
=> A = t + 1
Ta có: x2+2xy+7(x+y)+2y2+10=0
<=> (x2 + 2xy + y2) + 7(x + y) + 10 + y2 = 0
<=> (x + y)2 + 7(x + y) + 10 = - y2
<=> t2 + 7t + 10 = - y2 \(\le\)0
<=> \(-5\le t\le-2\)
<=> \(-4\le t+1\le-1\)
<=> \(-4\le A\le-1\)
Vậy GTLN là A = - 1dấu bằng xảy ra khi x = - 2, y = 0; GTNN là A = - 4 dấu bằng xảy ra khi x = - 5, y = 0
\(\left(x+y\right)^2+6\left(x+y\right)+9+y^2-3=0\)
\(\Leftrightarrow\left(x+y+3\right)^2+y^2-3=0\Leftrightarrow\left(x+y+3\right)^2=3-y^2\le3\)
\(\Rightarrow\left(x+y+3\right)^2\le3\Rightarrow-\sqrt{3}\le x+y+3\le\sqrt{3}\)
\(\Rightarrow-3-\sqrt{3}\le x+y\le-3+\sqrt{3}\)
\(\Rightarrow\left\{{}\begin{matrix}S_{max}=-3+\sqrt{3}\\S_{min}=-3-\sqrt{3}\end{matrix}\right.\)
Từ \(3-y^2\le3\) cho thấy dấu "=" cả 2 trường hợp đều xảy ra tại \(y=0\) còn \(S_{max}\) tại \(x=-3+\sqrt{3};S_{min}\Rightarrow x=-3-\sqrt{3}\)