K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
12 tháng 8 2021

undefined

Giả sử tia phân giác của góc A và D cắt nhau tại E

ta có : \(\widehat{EAD}+\widehat{EDA}=90^0\Leftrightarrow\frac{1}{2}\widehat{ADC}+\frac{1}{2}\widehat{DAB}=90^0\)

Hay \(\widehat{ADC}+\widehat{DAB}=180^0\) vậy hai góc trên là hai goc bù nhau nên AB//CD

b. tương tự câu a, nếu gọi F là giao điểm của tia phân giác của B và C.

ta có 

\(\widehat{ABC}+\widehat{BCD}=180^0\Rightarrow\widehat{FBC}+\widehat{FCB}=90^0\Rightarrow\widehat{BFC}=90^0\)

Vậy BF vuông góc với FC

21 tháng 8 2020

Cho tứ giác ABCD có các tia phân giác góc A và góc B vuông góc với nhau 

CM: tứ giác ABCD là hình thang

HOK TOT

a) Xét tứ giác ABCD có 

\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)(Định lí tổng bốn góc trong một tứ giác)

mà \(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}\)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được: 

\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\dfrac{360^0}{10}=36^0\)

Do đó: \(\widehat{A}=36^0;\widehat{B}=72^0;\widehat{C}=108^0;\widehat{D}=144^0\)

Ta có: \(\widehat{B}+\widehat{C}=180^0\)

mà hai góc này là hai góc trong cùng phía

nên AB//CD(dấu hiệu nhận biết hai đường thẳng song song)

hay ABCD là hình thang