Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tứ giác ABCD, ta có: ∠ A + ∠ B + ∠ C + ∠ D = 360 °
⇒ ∠ C + ∠ D = 360 ° - ( ∠ A + ∠ B) = 360 ° – ( 110 ° + 100 ° ) = 150 °
Do DE và CE lần lượt là tia phân giác của góc
Trong ΔCED ta có:
∠ CED = 180o – ∠ C 1 + ∠ D 1 = 180 ° - 75 ° = 105 °
DE ⊥ DF (t/chất tia phân giác của hai góc kề bù) ⇒ ∠ EDF = 90 °
CE ⊥ CF (t/chất tia phân giác của hai góc kề bù) ⇒ ∠ ECF = 90 °
Trong tứ giác CEDF, ta có: ∠ DEC + ∠ EDF + ∠ DFC + ∠ ECF = 360 °
⇒ ∠ DFC = 360 ° - ( ∠ DEC + ∠ EDF + ∠ ECF) = 360 ° - 105 ° - 90 ° - 90 ° = 75 °
Bạn tham khảo tại đây:
Bài 8 Sách bài tập - trang 80 - Toán lớp 8 | Học trực tuyến
Bạn chú ý cái đường link rồi sửa thành h là OK hết chỗ nói nha.Hoặc là ib với mik rồi mik cho:3
Xét Tứ giác ABCD có: góc A + B + C + D = 360o => 100o + 120o + (C + D) = 360o => góc C + D = 140o
DE; CE lần lượt là p/g của góc D; C => góc D1 = D/ 2 ; C1 = C/ 2 => góc (D1 + C1) = (D + C) /2 = 700
Xét tam giác DEC có: góc D1 + góc E + góc C1 = 180o => góc DEC = 180o - (D1 + C1) = 180o - 70o = 110o
Vì tia Dx là p/g ngoài của góc D; DE là p/g trong của góc D => Dx vuông góc với DE => DF vuông góc với DE => góc EDF = 900
=> góc D2 = 90o - D1
Vì tia Cy là p/g ngoài của góc ACD ; CE là p/g trong của góc ACD => Cy vuông góc với CE => CF vuông góc với CE => góc ECF = 90o
=> góc C2 = 90o - C1
Xét tam giác CDF có: góc C2 + góc CFD + góc D2 = 180o
=> góc CFD + (90o - D1 + 90o - C1) = 180o => góc CFD + 180o - (D1 + C1) = 180o => góc CFD = D1 + C1 = 90o
Ta có: góc A+B+C+D=360 =>C+D=150 độ
Tính góc CED + EDC=1/2C+1/2D=1/2(C+D)=75(do phân giác)
=>E=180-75=105
ta có góc tạo bởi 2 tia phân giác của 2 góc kề có tổng là 90 độ (có cm trong sgk)
nên ECF+EDF=90+80=180 độ
=>CFD= 360-180-105=75
Xong rồi, nhưng bạn lập luận chặt chẽ hơn nhé
a) Sử dụng tính chất dãy tỉ số bằng nhau. A ^ = 144 0 , B ^ = 108 0 , C ^ = 72 0 , D ^ = 36 0
b) Sử dụng tổng ba góc trong tam giác tính được C E D ^ = 126 0 .
Chú ý hai phân giác trong và ngoài tại mỗi góc của một tam giác thì vuông góc nhau, cùng với tổng bốn góc trong tứ giác, ta tính được C F D ^ = 54 0