Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác MOA và tam giác MOB có :
OM là cạnh chung
MOA = MOB ( vì ox là tia phân giác góc xOy )
OMA = OMB ( = 90 độ )
Nên tam giác MOA = tam giác MOB ( c - c - c )
b. Ta có tam giác MOA = tam giác MOB ( cmt )
Nên MA = MB
Do đó M là trung điểm của AB
Vì vậy OM là đường trung trực của AB
Nhớ tk mk nha !!!
Xét tam giác AMO vuông tại A và tam giác BMO vuông tại B có:
AOM = BOM (OM là tia phân giác của AOB)
OM chung
=> Tam giác AMO = Tam giác BMO (cạnh huyền - góc nhọn)
=> AMO = BMO (2 góc tương ứng) => MO là tia phân giác của AMB
AM = BM (2 cạnh tương ứng) => tam giác MAB cân tại A
có MO là tia phân giác của AMB (chứng minh trên)
=> MO là đường trung trực của AB
Tự vẽ hình nhé ?
a) Vì Ot là tia phân giác của ∠xOy (GT)
=> ∠xOt = ∠yOt (tính chất)
Hay ∠AOM = ∠BOM (1)
Vì MA ⊥ Ox (GT)
=> ∠OAM = 90o (ĐN) (2)
Vì MB ⊥ Oy (GT)
=> ∠OBM = 90o (ĐN)
Mà ∠OAM = 90o (ĐN) (Theo (2))
=> ∠OAM = ∠OBM = 90o (3)
Xét ∆MOA và ∆MOB có :
∠OAM = ∠OBM = 90o (Theo (3))
OM chung
∠AOM = ∠BOM (Theo (1))
=> ∆MOA = ∆MOB (cạnh huyền - góc nhọn) (4)
=> MA = MB (2 cạnh tương ứng)
b) Xét ∆MOA vuông tại A có :
OA2 + MA2 = OM2 (ĐL pi-ta-go)
Mà OA = 8cm (GT), OM = 10cm (GT)
=> 82 + MA2 = 102
=> 64 + MA2 = 100
=> MA2 = 100 - 64
=> MA2 = 36
=> MA2 = \(\sqrt{36}\)
=> MA = 6cm
c) Từ (4) => OA = OB (2 cạnh tương ứng) (5)
Xét ∆IOA và ∆IOB có :
OA = OB (Theo (5))
∠AOI = ∠BOI (Theo (1))
OI chung
=> ∆IOA = ∆IOB (c.g.c) (6)
=> IA = IB (2 cạnh tương ứng)
Mà I nằm giữa A và B
=> I là trung điểm của AB (7)
Từ (6) => ∠AIO = ∠BIO (2 góc tương ứng)
Mà ∠AIO + ∠BIO = 180o (2 góc kề bù)
=> ∠AIO = ∠BIO = 180o : 2 = 90o
=> OI ⊥ AB (ĐN) hay OM ⊥ AB (8)
Từ (7), (8) => OM là đường trung trực của AB (đpcm)
Vậy ...
a,b: Xét ΔOAM vuông tại A và ΔOBM vuông tạiB co
OM chung
góc AOM=góc BOM
=>ΔOAM=ΔOBM
=>OA=OB và MA=MB
=>ΔOAB cân tại O
c: Xét ΔMAD vuông tại A và ΔMBE vuông tại B có
MA=MB
góc AMD=góc BME
=>ΔMAD=ΔMBE
=>MD=ME
a) Xét tam giác vuông AOM và tam giác vuông BƠM có:
Cạnh huyền AM chung
\(\widehat{AOM}=\widehat{BOM}\) (gt)
\(\Rightarrow\Delta AOM=\Delta BOM\) (Cạnh huyền - góc nhọn)
\(\Rightarrow MA=MB;OA=AB\)hay tam giác OAB cân tại O.
b) Xét tam giác vuông AMD và tam giác vuông BME có:
AM = BM
\(\widehat{AMD}=\widehat{BME}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMD=\Delta BME\) (Cạnh góc vuông - góc nhọn kề)
\(\Rightarrow MD=ME\)
c) Ta thấy OA = OB; AD = BE nên OD = OE
Vậy thì \(\Delta ODI=\Delta OEI\left(c-g-c\right)\)
\(\Rightarrow\widehat{OID}=\widehat{OIE}\)
Chúng lại là hai góc kề bù nên \(\widehat{OID}=\widehat{OIE}=90^o\) hay MO vuông góc DE.
Bài làm
a) Xét tam giác AOM và tam giác OBM có:
\(\widehat{OAM}=\widehat{OBM}=90^0\)
Cạnh huyền: OM chung
Góc nhọn: \(\widehat{MOA}=\widehat{MOB}\)( Vì OM là tia phân giác của góc xOy )
=> Tam giác AOM = tam giác OBM ( cạnh huyền - góc nhọn )
=> MA = MB ( hai cạnh tương ứng )
b) Vì tam giác OAM = tam giác OBM ( Theo câu a )
=> OA = OB ( hai cạnh tương ứng )
=> Tam giác OAB cân tại O
c) Xét tam giác EBM và tam giác DAM có:
\(\widehat{EBM}=\widehat{DAM}=90^0\)
BM = MA ( chứng minh trên )
\(\widehat{EMB}=\widehat{AMD}\)( hai góc đối đỉnh )
=> Tam giác EBM = tam giác DAM ( g.c.g )
=> ME = MD ( hai cạnh tương ứng )
d) Vì tam giác EBM = tam giác DAM ( theo câu d )
=> BE = AD ( hai cạnh tương ứng )
Ta có: OB + BE = OE
OA + AD = OD
Mà OA = OB ( tam giác OAB cân tại O )
BE = AD ( chứng minh trên )
=> OE = OB
Gọi gia điểm của Om và ED là Z
Xét tam giác OZE và tam giác OZD có:
OE = OB ( cmt )
\(\widehat{EOZ}=\widehat{ZOD}\)( OM là tia phân giác của góc xOy )
Cạnh OZ chung
=> Tam giác OZE = tam giác OZD ( c.g.c )
=> \(\widehat{OZE}=\widehat{OZD}\)( Hai góc tương ứng )
Ta có: \(\widehat{OZE}+\widehat{OZD}=180^0\)
Mà \(\widehat{OZE}=\widehat{OZD}\)
=> \(\widehat{OZE}=\widehat{OZD}=\frac{180^0}{2}=90^0\)
=> OZ vuông góc với ED
Hay OM vuông góc với ED ( đpcm )
# CHúc bạn học tốt #
a) Dễ dàng chứng minh được hai tam giác \(\Delta OAM=\Delta OBM\left(ch-gn\right)\)
Thật vậy có :
+) OM chung
+) \(\widehat{AOM}=\widehat{BOM}\)
Suy ra có hai cạnh tương ứng là MA = MB
b) Tam giác OAB là tam giác cân tại O vì có OA = OB \(\left(\Delta OAM=\Delta OBM\right)\)
c) Xét hai tam giác vuông \(OBD\)và \(OAE\)
+) OB = OA
+) Chung góc \(\widehat{AOB}\)
Vậy hai tam giác trên bằng nhau theo : \(\Delta OBD=\Delta OAE\)(cgv - gn kề cgv)
Suy ra OD = OE mà OA = OB nên OD - OA = OE - OB hay AD = BE
Và góc ODB = góc OEA (hai góc tương ứng)
Từ đó suy ra được hai tam giác DAM = tam giác EBM ( cgv - gn kề cgv)
+) AD = BE
+) góc ADM = góc BEM
Suy ra MD = ME ( hai cạnh tương ứng)