Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADCI có
M là trung điểm của AC
M là trung điểm của DI
Do đó: ADCI là hình bình hành
mà IA=IC
nên ADCI là hình thoi
c: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
\(AI=\dfrac{BC}{2}=2.5\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=2.4\left(cm\right)\)
\(HI=\sqrt{2.5^2-2.4^2}=0.7\left(cm\right)\)
\(S_{AIH}=\dfrac{2.4\cdot0.7}{2}=1.2\cdot0.7=0.84\left(cm^2\right)\)
a) Chứng minh được ADCI là hình thoi.
b) Gọi AI Ç BN = G Þ là trọng tâm DABC.
Ta chứng minh DK = GI, lại có D C = A I ⇒ D K D C = G I A I = 1 3
c) SADCI = 2SACI = SABC = 96cm2
1a/IM vuông góc AB=>AMI=90 do
IN vuông góc AC=>ANI=90 do
△ABC vuông tại A=>BAC=90 do
=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật
1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)
Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)
Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi
2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H
=> AM=MB VA EM=MH hay AB giao voi EH tai TD M
=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn
2b/Co AEBH la hcn=>EH=AB
+) Mà AB=AC=>EH=AC(1)
+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.
Co goc BAH=1/2 EAH ; góc AHE=1/2AHB
Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.
Mà 2 góc này ở vị trí SLT=> EH//AC(2)
Từ (1) va (2)=>tg AEHC la hbh
a/ Xét t.g ABC có I là trung điểmBC ; IN // AB (cùng vuông góc vs AC)=> N là trung điểm AC
Xét tứ giác ADCI có
N là trđ AC
N là trđ DI
\(\widehat{ANI}=90^o\)
AC cắt DI tại N
=> ADCI là hình htoi
b/ Gọi O là giao điểm AI và BN
=> O là trọng tâm t/g ABC
=> OI = 1/3 AI = 1/2 DCt/g OIN= t/gKDN (g.c.g)
=> KD = IO = 1/3DC=> ĐPcm
c/ Theo Pythagoras ; AC = 16 cm
Cí IN = 1/2 AB ; IN = 1/2 ID=> ID = AB = 12
Có \(S_{ADCI}=\dfrac{1}{2}.ID.AC=8.12=96\left(cm^2\right)\)
a: Xét tứ giác AMIN có
\(\widehat{AMI}=\widehat{ANI}=\widehat{NAM}=90^0\)
Do đó: AMIN là hình chữ nhật
Suy ra: AI=MN