Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
em moi hoc lop 4 nen ko biet kien thuc nay , nen chi chuc chi lay duoc cau tra loi chinh xac nhat va nhanh nhat
1)
Ta có : BD là đg trung tuyến của tam giác ABC (gt)
=> D là tđ của AC (1)
CE là đg trung tuyến của tam giác ABC (gt)
=>E là tđ của AB (2)
Từ (1),(2)
=>DE là đg trung bình của tam giác ABC
=>DE // BC : DE=1/2 BC
Thay BC=10cm
=>DE=5cm
2)
a) Ta có:MN // BC (gt)
=>MI // BC
Lại có:ED // BC (cmt)
=>MI // BC
Xét tam giác BED,có:
MI // BC
I là tđ của BD (gt)
=> MI là đg trung bình của tam giác BED
=>M là tđ của BE
b) Ta có: MN // BC (gt)
=>MK // BC
Xét tam giác BEC,có:
MK // BC (cmt)
M là tđ của BE (cmt)
=> MK là đg trung bình của tam giác BEC
c) ko đề
d) MK là đg trung bình của tam giác BEC (cmt)
=>MK=1/2 BC
=>MI + IK =1/2 BC
Thay MI =1/2 DE (MI là đg trung bình của tam giác BED)
=>1/2 DE + IK = 1/2 BC
=> IK =1/2 (BC-DE)
=>IK=1/2 DE (vì DE =1/2 BC)
Có: MI =1/2 DE (cmt)
KN =1/2 DE (cmt)
=>MI=KN=IK (=1/2 DE)
a) ∆ABC có M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác => MN // BC
Tứ giác MNCB có MN // BC nên là hình thang
b) Xét ∆EQN và ∆KQC có:
^ENQ = ^KCQ (BN//CK, so le trong)
QN = QC (gt)
^EQN = ^KQC (đối đỉnh)
Do đó ∆EQN = ∆KQC (g.c.g)
=> EN = KC ( hai cạnh tương ứng) (1)
∆NBC có Q là trung điểm của NC và QE // BC nên E là trung điểm của BN => EN = BE (2)
Từ (1) và (2) suy ra KC = BE
Tứ giác EKCB có KC = BE và KC // BE nên là hình bình hành => EK = BC (đpcm)
c) EF = EQ - FQ = 1/2BC - 1/2MN = 1/2BC - 1/4BC = 1/4BC (đpcm)
d) Gọi J là trung điểm của BC
Ta có EJ là đường trung bình của ∆NBC nên EJ // NC mà FI⊥NC nên FI⊥EJ
Tương tự suy ra EI⊥FJ suy ra I là trực tâm của ∆EFJ => JI⊥EF
Mà dễ thấy EF // BC nên IJ⊥BC
∆BIC có IJ vừa là đường cao vừa là trung tuyến nên là tam giác cân (đpcm)
a) Do M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác ABC.
=> MN //BC
Tứ giác MNCB có MNBC nên MNCB là hình thang.
b) Xét tứ giác EKCB có EK//BC, BE//CK
=> EKCB là hình bình hành
=> EK = BC (đpcm)
a: Xét ΔBAC có
MN//AB
nên \(\dfrac{CM}{CB}=\dfrac{MN}{AB}\)
\(\Leftrightarrow MN=6\cdot\dfrac{1}{2}=3\left(cm\right)\)
b: Vì M đối xứng với E qua AC
nên AC là đường trung trực của ME
mà AC cắt ME tại N
nên N là trung điểm của ME
Xét tứ giác AMCE có
N là trung điểm của đường chéo ME
N là trung điểm của đường chéo AC
Do đó: AMCE là hình bình hành