K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2019

Hình bạn tự vẽ nhé

a) Xét tam giác ABD và tam giác ACE ta có: 

\(\hept{\begin{cases}\widehat{BAC}-chung\\\widehat{BDA}=\widehat{CEA}=90^o\end{cases}}\Rightarrow\Delta ABD~\Delta ACE\left(g.g\right)\)

b) H là giao điểm của BD và CE suy ra H là trực tâm của tam giác ABC

=> AH là đường cao thứ 3 của tam giác ABC => \(AH\perp BC\)

Xét \(\Delta CEB\) và \(\Delta CKH\) ta có:

\(\hept{\begin{cases}\widehat{CEB}=\widehat{CKH}=90^o\\\widehat{ECB}-chung\end{cases}}\Rightarrow\Delta CEB~\Delta CKH\left(g.g\right)\Rightarrow\frac{CE}{CK}=\frac{BC}{CH}\Rightarrow CE.CH=BC.CK\)(1)

c) Ta có: Xét \(\Delta BKH\) và \(\Delta BDC\) ta có:

\(\hept{\begin{cases}\widehat{DBC}-chung\\\widehat{HKB}=\widehat{BDC}=90^o\end{cases}}\Rightarrow\frac{BK}{BD}=\frac{BH}{BC}\Rightarrow BK.BC=BH.BD\)(2)

Cộng theo vế của (1) và (2):

\(BH.BD+CH.CE=BC\left(CK+BK\right)=BC^2\left(đpcm\right)\)

2 tháng 4 2023

Giai dùm câu d

27 tháng 3 2019

Giải:
a) Xét 2 tam giác ABD và tam giác ACE có
góc A chung
góc AEC=góc ADB=90 độ
=>2 tam giác ABD đồng dạng tam giác ACE
b) Do BEDC nt=>góc BED+góc DCB=180 độ mặt khác góc AED+góc BED=180 độ=>góc AED=góc DCB
Mặt khác do góc A chung=>tam giác AED đồng dạng tam giác ACB
c) do 2 tam giác ADE và tam giác ACB đồng dạng:
=>S_(ADE)/S_(ACB)=(AE/AC)^2=sin(ACE)^2

d) Giả sử CA<CB.
Lấy điểm N thuộc CB sao cho góc CKN=góc CAB
=>tam giác CAK đồng dạng tam giác CKN=>CK^2=CA.CN<CA.CB(dpcm)

27 tháng 3 2019

xong

A B C H F E D

gọi F là giao AH và BC

vì tam giác ABC có 2 đường cao CE và BD cắt nhau tại H

=> H là trực tâm tam giác ABC

=>AH vuông góc với BC    hay AF vuông góc với BC

Xét tam giác BHF và tam giác BCD có:

             góc HBF chung

             góc BCD=góc BFH=90 độ(gt)

=>tam giác BHF đồng dạng với tam giác BCD(g-g)

=>BH/BF = BC/BD

=>BH.BD=BF.BC    (1)

Xét tam giác CFH và tam giác CEB có:

                góc HCF chung

                góc CFH=góc CEB=90 độ(gt)

=>tam giác CFH đồng dạng tam giác CEB(g-g)

=>CH/CF = CB/CE

=>CH.CE=CF.CB    (2)

Từ (1),(2) => BH.BD+CH.CE=BF.BC+CF.CB

                                              =BC.(CF+BF)=BC.BC=BC2 (đpcm)

5 tháng 5 2023

hộ e cái mọi người ơi

 

22 tháng 2 2017

A ; Ta có : góc ADB=góc AEC=90 độ( đề cho) 

                góc BAC ( chung)

  vậy tam giác ABD đồng dạnh với tam giác ACE ( góc - góc)

B; Xét tam giác EHB và tam giác BCH có:

  góc CBH = góc BEH=90 độ

    Theo phần a ta lại có góc : EBH=ACE( định lí ta/lét)

        vậy suy ra tam giác EHB đồng dạng với tam giác DHC ( góc - góc)

  dựa theo 2 tam giác đồng dạng ta có tỉ lệ:

           EH/HD=BH/HC ( Ta -lét)

          EH*HC=BH*HD( ĐPCM)

 C; Theo phần a ta có :

 tam giác ABD đồng dạng với tam giác ACE:

suy ra : AB/AD=EA/AC( theo định lí tam giác đồng dạng )

 góc A chung

 vậy tam giác AED đồng dạng với tam giác ABC ( cạnh -góc -cạnh)