K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2016

N M P E F Q

a)

5 tháng 12 2016

Ta có hình vẽ:

M N P E F Q

a/ Xét tam giác MEF và tam giác PQF có:

MF = EP (GT)

\(\widehat{MFE}\)=\(\widehat{PFQ}\) (đối đỉnh)

EF = FQ (GT)

=> tam giác MEF= tam giác PQF (c.g.c)

=> ME = QP (2 cạnh tương ứng)

Ta có: \(\begin{cases}ME=QP\\ME=NE\end{cases}\)\(\Rightarrow\)NE = PQ (đpcm)

b/ Ta có: \(\widehat{EMF}\)=\(\widehat{FPQ}\) (tam giác MEF = tam giác FQP)

Mà 2 góc này đang ở vị trí so le trong

=> ME // QP

Ta có: ME trùng NE, mà ME // PQ

=> NE // PQ => \(\widehat{NEP}\)=\(\widehat{EPQ}\) (so le trong) (1)

Ta có: NE = PQ (câu a) (2)

EP: cạnh chung (3)

Từ (1),(2),(3) => tam giác NEP = tam giác QPE (c.g.c)

c/ Ta có: tam giác NEP = tam giác QPE (câu b)

=> EQ = NP

Mà EF = FQ ( theo giả thiết)

=> EF = FQ = \(\frac{1}{2}\)EQ=\(\frac{1}{2}\)NP

Vậy EF = \(\frac{1}{2}\) NP (đpcm)

Do tam giác NEP = tam giác QPE (câu b)

=> \(\widehat{QEP}\)=\(\widehat{EPN}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> EQ // NP hay EF // NP (vì E,F,Q cùng nằm trên 1 đường thẳng) (đpcm)

6 tháng 12 2016

M N P E F Q

a/ Xét \(\Delta EFM\)và \(\Delta QFP\)

\(\hept{\begin{cases}EF=QF\\\widehat{EFM}=\widehat{QFP}\\FM=FP\end{cases}}\)

\(\Rightarrow\Delta EFM=\Delta QFP\)

\(\Rightarrow EM=QP\)

Mà \(EM=NE\Rightarrow NE=QP\)

b/ Từ câu a ta có \(\widehat{EMF}=\widehat{QPF}\)

\(\Rightarrow\widehat{EPQ}=\widehat{EPM}+\widehat{FPQ}=\widehat{EPM}+\widehat{EMF}=\widehat{NEP}\left(1\right)\)

Xét \(\Delta NEP\) và \(\Delta QPE\)

\(\hept{\begin{cases}EP\left(chung\right)\\NE=QP\\\widehat{NEP}=\widehat{QPE}\end{cases}}\)

\(\Rightarrow\Delta NEP=\Delta QPE\)

c/ Từ câu b/ ta suy ra \(\widehat{NPE}=\widehat{PEQ}\)

=>EF // NP

Lại từ câu b ta có

\(NP=EQ=EF+FQ=2EF\)

\(\Rightarrow EF=\frac{1}{2}NP\)

7 tháng 12 2016

bài này động đến đường trung bình của tam giác 

nếu khó hơn thì học sẽ ko cho trc điểm Q và các câu a và b

a) Xét ΔMFE và ΔPFQ có 

MF=PF(F là trung điểm của MP)

\(\widehat{MFE}=\widehat{PFQ}\)(hai góc đối đỉnh)

FE=FQ(F là trung điểm của EQ)

Do đó: ΔMFE=ΔPFQ(c-g-c)

hay ME=PQ(hai cạnh tương ứng)

mà ME=NE(E là trung điểm của MN)

nên NE=PQ(đpcm)

b) Ta có: ΔMFE=ΔPFQ(cmt)

nên \(\widehat{EMF}=\widehat{QPF}\)(hai góc tương ứng)

mà \(\widehat{EMF}\) và \(\widehat{QPF}\) là hai góc ở vị trí so le trong

nên ME//PQ(Dấu hiệu nhận biết hai đường thẳng song song)

hay NE//PQ

\(\widehat{NEP}=\widehat{QPE}\)(hai góc so le trong)

Xét ΔNEP và ΔQPE có 

NE=PQ(cmt)

\(\widehat{NEP}=\widehat{QPE}\)(cmt)

EP chung

Do đó: ΔNEP=ΔQPE(c-g-c)

c) Ta có: ΔNEP=ΔQPE(cmt)

nên \(\widehat{NPE}=\widehat{QEP}\)(hai góc tương ứng)

mà \(\widehat{NPE}\) và \(\widehat{QEP}\) là hai góc ở vị trí so le trong

nên EQ//NP(Dấu hiệu nhận biết hai đường thẳng song song)

hay EF//NP(đpcm)

Ta có: ΔNEP=ΔQPE(cmt)

nên NP=QE(hai cạnh tương ứng)

mà \(EF=\dfrac{1}{2}QE\)(F là trung điểm của QE)

nên \(EF=\dfrac{1}{2}\cdot NP\)(đpcm)

a: Xét ΔMNI và ΔMPI có 

MN=MP

NI=PI

MI chung

Do đó: ΔMNI=ΔMPI

Ta có: ΔMNP cân tại M

mà MI là đường trung tuyến

nên MI là đường cao

b: Xét tứ giác MNQP có

I là trung điểm của MQ

I là trung điểm của NP

Do đó: MNQP là hình bình hành

Suy ra: MN//PQ

c: Xét tứ giác MEQF có 

ME//QF

ME=QF

Do đó: MEQF là hình bình hành

Suy ra: MQ và EF cắt nhau tại trung điểm của mỗi đường

mà I là trung điểm của MQ

nên I là trung điểm của FE

hay E,I,F thẳng hàng

26 tháng 12 2020

F E M D N P

a) Xét\(\Delta FEPvà\Delta DEMcó\)

EF=ED(giả thiết)

\(\widehat{FEP}=\widehat{DEM}\) ( 2 góc đối đỉnh )

EP=EM ( vì E là trung điểm của PM)

\(\Rightarrow\Delta FEP=\Delta DEM\left(c-g-c\right)\)

\(\Rightarrow\widehat{PFE}=\widehat{MDE}\) ( 2 góc tương ứng)

hay \(\widehat{PFD}=\widehat{MDF}\) mà 2 góc này là 2 góc so le trong của đường thẳng FD cắt 2 đường thẳng FP và MD

\(\Rightarrow FP//MD\)

vậy \(FP//MD\)

b) ta có  \(\Delta FEP=\Delta DEM\) (chứng minh câu a)

\(\Rightarrow FD=DM\) ( 2 cạnh tương ứng )

mà MD=ND (vì D là trung điểm của MN )

\(\Rightarrow DN=FP\)

vậy DN=FP

c) nối F và N

ta có \(MD//FP\)  \(hay\) \(MN//FP\Rightarrow\widehat{PFN}=\widehat{DNF}\) ( 2 góc so le trong )

Xét\(\Delta PFNvà\Delta DNFcó\)

PF=DN (chứng minh câu b )

\(\widehat{PFN}=\widehat{DNF}\) (chứng minh trên )

FN là cạnh chung 

\(\Rightarrow\Delta PFN=\Delta DNF\left(c-g-c\right)\)

\(\Rightarrow DF=NP\) ;

\(\widehat{DFN}=\widehat{PNF}\)  mà 2 góc này là 2 góc so le trong của đường thẳng FN cắt 2 đường thẳng FD và NP

\(\Rightarrow FD//NP\)

vậy FD//NP