Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác : ADO = AEO ( c-g-c ) => ADO = AEO => tam giác MDO = NOE => MO = ON
BO = CO ( khỏi xét )
=> MB = NC
Gọi F là giao điểm BD và CE
=> BCF đều = ABC
Bạn tự CM : M; N là trung điểm ; O là trung điểm AF
=> M là trọng tâm tam giác ABF ; N là ....
=> dpcm
a) Gọi O là trung điểm của BC.
Ta có \(\stackrel\frown{BD}=\stackrel\frown{DE}=\stackrel\frown{EC}\Rightarrow\widehat{BOD}=\widehat{DOE}=\widehat{EOC}=60^o\).
Từ đó CE // AB, BD // AC.
Suy ra \(\Delta ABN\sim\Delta ECN\).
b) Theo tính đối xứng ta có BM = CN.
Ta có \(\dfrac{BN}{NC}=\dfrac{AB}{CE}=\dfrac{AB}{CO}=2\Rightarrow BN=2NC\Rightarrow MN=NC\).
Dễ dàng suy ra đpcm.