K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2015

d) chứng minh được tam giác AIE = tam giác DIC (có dữ kiện đầy đủ rồi)

tam giác ACD = tam giác FCB (chứng minh được luông)

=> Sacd = S fcb

Ta có:

S ABD = 1/2  S ABCD (tam giác ABD = tam giác FBD)

=> S BAC + S ACI + S CID = 1/2 S ABCD

=> S BAC + SACI + S AIE = 1/2 S ABCD (tam giác AID = tam giác AIE => S AID = S AIE)

mà S BAC + SACI + S AIE = S ABCE

=> S ABCE = 1/2 S ABCD (đpcm)

p/s: có chỗ nào không hiểu thì cứ nhắn tin hỏi ~

22 tháng 12 2015

sao toàn bài chưa học thế nhỉ

16 tháng 11 2021

a: Xét tứ giác ADCF có 

E là trung điểm của AC

E là trung điểm của DF

Do đó: ADCF là hình bình hành

mà \(\widehat{ADC}=90^0\)

nên ADCF là hình chữ nhật

18 tháng 12 2021

Các bạn làm giúp mình vs !!!  Mai mình phải nộp ròi

18 tháng 12 2021

ABCDIKEFNM----

a) Vì ABCD là hcn => AB//CD; AB=CD

Mà E,F lần lượt là trung điểm của AB và CF

=> EA=EB=1/2AB;DF=FC=1/2DC và EA//FC

=> EA=FC;EA//FC

Do đó AECF là hbh ( 2 cạnh đối // và = nhau)

b) 

Vì ABCD là hcn => AB//CD; AB=CD

Mà E,F lần lượt là trung điểm của AB và CF

=> EA=EB=1/2AB;DF=FC=1/2DC và EA//DF

=> EA=DF;EA//DF

=> AEFD là hbh (  ( 2 cạnh đối // và = nhau)

Lại có: ^ADF=90o ( ABCD là hcn)

Do đó:  AEFD là hcn. ( hbh có 1 góc vuông) (đpcm)

c) Vì A đối xứng với N qua D (gt)

=> AN là đường trung trực của ^MAF

=> MA=AF (1)

Vì M đối xứng với F qua D

<=>MF là đường trung trực của ^AMN

=>MA=MN (2)

<=> FM là đường trực của ^AFN

=>AF=NF (3)

Từ (1);(2) và (3) => AM=MN=NF=AF

Nên: AMNF là hình thoi (tứ giác có 4 góc vuông ) (đpcm)

d) ngu câu hình cuối nên bỏ đi để làm n'

mình chứng minh DK đg trung tuyến nw o khả quan lắm :)) nên bỏ 

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K