K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(S_{DEF}=\dfrac{DE\cdot DF}{2}=\dfrac{DH\cdot FE}{2}\)

nên \(DE\cdot DF=DH\cdot FE\)

c: Xét ΔDHE vuông tại H có HN là đường cao

nên \(DN\cdot DE=DH^2\left(1\right)\)

XétΔDHF vuông tại H có HM là đường cao

nên \(DM\cdot DF=DH^2\left(2\right)\)

Từ(1) và (2) suy ra \(DN\cdot DE=DM\cdot DF\)

hay DN/DF=DM/DE

Xét ΔDNM vuông tại D và ΔDFE vuông tại D có

DN/DF=DM/DE

Do đó: ΔDNM\(\sim\)ΔDFE

a: \(DE=\sqrt{15^2-12^2}=9\left(cm\right)\)

\(S_{DEF}=\dfrac{1}{2}\cdot9\cdot12=6\cdot9=54\left(cm^2\right)\)

b: Xét tứ giác DMHN có

góc DMH=góc DNH=góc MDN=90 độ

nên DMHN là hình chữ nhật

c: Xét tứ giác DHMK có

DK//MH

DK=MH

Do đó: DHMK là hình bình hành

10 tháng 5 2022

Theo định lí Pytago tam giác DEF vuông tại D

\(DF=\sqrt{EF^2-DE^2}=16cm\)

b, Xét tam giác EDF và tam giác DHF 

^DFE _ chung 

^EDF = ^DHF = 900

Vậy tam giác EDF ~ tam giác DHF (g.g) 

\(\dfrac{EF}{DF}=\dfrac{DF}{HF}\Rightarrow DF^2=EF.HF\)

a: \(DF=\sqrt{20^2-12^2}=16\left(cm\right)\)

b: Xét ΔEDF vuông tại D và ΔDHF vuông tại H có 

góc F chung

Do đó: ΔEDF\(\sim\)ΔDHF

11 tháng 5 2022

a, Theo định lí Pytago tam giác DEF vuông tại D

\(DF=\sqrt{EF^2-DE^2}=16cm\)

b, Xét tam giác EDF và tam giác DHF có 

^EFD _ chung, ^EDF = ^DHF = 900

Vậy tam giác EDF ~ tam giác DHF (g.g) 

\(\dfrac{EF}{DF}=\dfrac{DF}{HF}\Rightarrow DF^2=EF.HF\)