Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: Trên cạnh BC lấy điểm E sao cho BE = BA (xem lại đoạn này)
CM: Xét t/giác ABD và t/giác EBD
có: AB = BE (gt)
\(\widehat{B_1}=\widehat{B_2}\)(gt)
BD : chung
=> t/giác ABD = t/giác EBD (c.g.c)
b) Ta có : t/giác ABD = t/giác EBD (cmt)
=> AD = DE (2 cạnh t/ứng)
=> \(\widehat{A}=\widehat{BED}=90^0\)(2 góc t/ứng) => \(DE\perp BC\)
c) Ta có: AB = BE (gt) => B \(\in\)đường trung trực của AE
AD = DE (cmt) => D \(\in\)đường trung trực của AE
mà B \(\ne\)D => BD là đường trung trực của AE
a) Có \(\Delta ABC\)cân \(\Rightarrow AB=AC\)
Xét \(\Delta ABD\)và \(\Delta ACE\)có :
\(\widehat{EAD:}chung\)
\(AB=AC\)
\(\widehat{ABD}=\widehat{AEC}\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta AEC\left(ch-gn\right)\)
\(\Rightarrow BD=CE\left(dpcm\right)\)
b)Xét \(\Delta BEC\)và \(\Delta CDB\)có :
\(CE=BD\left(cmt\right)\)
\(\widehat{BEC}=\widehat{CDB}=90^o\)
\(BC:chung\)
\(\Rightarrow\Delta BEC=\Delta CDB\left(ch-cgv\right)\)
\(\Rightarrow\widehat{BCE}=\widehat{CBD}\)
- \(\Delta BHC\)có \(\widehat{BEC}=\widehat{CBD}\Rightarrow\Delta BHC\)cân tại \(H\)