Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ
góc ACB+ACE=180 độ
=> góc ABD=góc ACE
Xét tam giác ABD và tam giác ACE có
AB=AC (tam giác ABC cân tại A)
góc ABD=góc ACE (cmt)
BD=CE(gt)
=> tam giác ABD=tam giác ACE(c-g-c)
=> AD=AE(cạnh tương ứng)
Vậy tam giác ADE cân và cân tại A
b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E
Xét tam giác AMD và tam giác AME có:
AD=AE(tam giác ADE cân tại A)
góc D=góc E(cmt)
góc AMD=góc AME=90 độ
=> tam giác AMD=tam giác AME(ch-gn)
=> góc DAM=góc EAM(góc tương ứng)
Vậy AM là tia phân giác góc DAE
bài làm
Ta có:vì AB=AC(gt)
mà trên tia đối của AB và AC lấy điểm D và E sao cho BD=CE
=>^BDE=^CED(2 góc tương ứng)
Xét t.g BDE và t.g CED
ED là cạnh chung
BD = CE
^BDE=^CED(cmt)
=>t.g BDE=t.g CED (c.g.c)
XL mình chỉ làm đc phần a thôi ( không biết có đúng không)
d: Ta có: \(\widehat{KBC}=\widehat{MBD}\)
\(\widehat{KCB}=\widehat{NCE}\)
mà \(\widehat{MBD}=\widehat{NCE}\)
nên \(\widehat{KBC}=\widehat{KCB}\)
hay ΔKBC cân tại K
=>KB=KC
Ta có: KB+BM=KM
KC+CN=KN
mà KB=KC
và BM=CN
nên KM=KN
=>ΔKNM cân tại K
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Chúc bạn học tốt!
Bài 6:
b) Theo câu a) ta có \(\Delta ABD=\Delta HBD.\)
=> \(\widehat{ADB}=\widehat{HDB}\) (2 góc tương ứng).
Ta có: \(\widehat{ADB}+\widehat{HDB}=\widehat{ADH}\left(gt\right)\)
=> \(\widehat{ADB}+\widehat{HDB}=120^0\)
Mà \(\widehat{ADB}=\widehat{HDB}\left(cmt\right)\)
=> \(2.\widehat{ADB}=120^0\)
=> \(\widehat{ADB}=120^0:2\)
=> \(\widehat{ADB}=60^0.\)
=> \(\widehat{ADB}=\widehat{HBD}=60^0\)
Xét \(\Delta ABD\) có:
(định lí tổng ba góc trong một tam giác).
=> \(90^0+\widehat{ABD}+60^0=180^0\)
=> \(150^0+\widehat{ABD}=180^0\)
=> \(\widehat{ABD}=180^0-150^0\)
=> \(\widehat{ABD}=30^0\)
Vậy \(\widehat{ABD}=30^0.\)
Chúc bạn học tốt!
a/ có: AB = AC
BD = CE
=> AB / BD = AC / CE
theo định lí đảo Thales ta suy ra: DE // BC (đpcm)
b/ có: MBD và NCE là hai tgiác vuông có cạnh huyền bằng nhau là:
BD = CE.
mặt khác do tính chất góc đối đỉnh ta có:
gócMBD = gócABC; gócNCE = gócACB
mà gócABC = gócACB (ABC là tgiác cân)
=> gócMBD = gócNCE
=> tgiácMBD = tgiácNCE
=> DM = EN (đpcm)
c/ Gọi K là trung điểm BC, do ABC là tgiác cân nên AK vuông BC (đường trung tuyến cũng là đường cao)
có BK = KC
mà MB = NC (tgiác MBD = tgiác NCE)
=> MB + BK = KC + CN
=> MK = KN
hiển nhiên AK vuông MN
tgiác AMN có AK vừa đường cao vừa trung tuyến nên là tgiác cân.
d/ IB cắt AM tại P, IC cắt AN tại Q
ta dể cm ABM và ACN là hai tgiác bằng nhau (có ba cạnh tương ứng bằng nhau đôi một)
nên hai đường cao tương ứng bằng nhau, tức là:
BP = CQ
=> tgiác PAB = tgiác QAC (hai tgiác vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)
=> AP = AQ
xét hai tgiác PAI có QAI là hai tgiác vuông có cạnh huyền:AI chung và
AP = AQ
=> tgiác API = tgiác QAI
=> góc PAI = góc QAI
mà do ta có hai tgiác bằng nhau nên:
góc PAB = góc QAC
=>góc BAI = góc CAI
Vậy: AI là tia phân giác của góc BAC và góc MAN.
*Đúng thật bài này cũng dể, em làm không được thì thấy lo rồi, nhưng đã post lên đây là có ý học hỏi. các Bác ở trên đừng nên nặng lời như vậy. người ta đánh kẻ chạy đi chứ không ai đánh kẻ chạy lại bao giờ. Chỉ đáng thương cho kẻ không biết mình ngu ở đâu...