Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ A kẻ đường vuông góc với tia pg của góc ngoài đỉnh C và cắt tia đối của tia CB tại A'.
Cm được MA = MA', CA = CA'.
Theo BĐT trong tam giác MBA' : MA' + MB > BA' = BC + CA' = BC + AC ⇒⇒ MA + MB > BC + AC (đpcm)
đúng ko bn nhỉ ?????
nếu đúng thì tk mk nha
:#
1: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB=CD
2: AB+BC>AC
mà AC>2BM
nên AB+BC>2BM
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AB=CD và CD//AB
=>DC vuông góc AC
b: AB+BC=CD+BC>DB=2BM
c: Xet ΔABD và ΔCDB có
AB=CD
BD chung
AD=CB
=>ΔABD=ΔCDB