Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo tính chất tia phân giác:
$\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}$
Áp dụng hệ thức lượng trong tam giác vuông:
$AB^2=BH.BC$
$AC^2=CH.BC$
$\Rightarrow \frac{BH}{CH}=(\frac{AB}{AC})^2=\frac{9}{16}$
Mà $BH+CH=BC=BD+CD=15+20=35$ (cm)
Do đó:
$BH=35:(9+16).9=12,6$ (cm)
$CH=35:(9+16).16=22,4$ (cm)
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{9}{16}\)
\(\Leftrightarrow HB=\dfrac{9}{16}HC\)
Ta có: \(HB+HC=BC\)
\(\Leftrightarrow HC\cdot\dfrac{25}{16}=35\)
\(\Leftrightarrow HC=22.4\left(cm\right)\)
\(\Leftrightarrow HB=12.6\left(cm\right)\)
tam giác ABC có AD phân giác nênAB/AC=BD/CD=15/20=3/4
BC=15+20=35
AB/AC=3/4=>AB2/AC2=9/16=>AB2/\(\left(AC^2+AB^2\right)=\)9/25
=>\(\frac{AB^2}{BC^2}=\frac{9}{25}\Rightarrow AB=\sqrt{35^2.\frac{9}{25}}=21\)
tam giác vuông ABC có AH là đường cao
BH=\(\frac{AB^2}{BC}=12.6\)
tick nhaaaaaaaaaaaaaaaaaaa
cho tam giác ABC vuông tại A. AB=15, AC=20, đg phân giác BD.
a, Tính AD
b, Gọi H là hình chiếu của A trên BC. Tính AH, HB
c, Cm tam giác AID cân
Ta có: BC=BD+DC=15+20=35(cm)
+ AD là phân giác => DC/DB=AB/AC
=> AB/AC=20/15=4/3
=> AB=4AC/3
lại có AB^2+AC^2=BC^2
<=> 16AC^2/9+AC^2=BC^2
<=> 25AC^2/9=1225
<=> AC^2=441
có tam giác ABC vuông tại A, AH là đường cao
=> AC^2=CH.BC
=> CH=AC^2/BC=441/35=12.6(cm)
=> BH=35-12.6=22.4(cm)
Ta có: BH+CH=BC
nên BC=63+112=175
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=11025\\AC^2=19600\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=105cm\\AC=140cm\end{matrix}\right.\)
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
hay \(\dfrac{BD}{105}=\dfrac{CD}{140}\)
mà BD+CD=BC=175
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{105}=\dfrac{CD}{140}=\dfrac{BD+CD}{105+140}=\dfrac{175}{245}=\dfrac{5}{7}\)
Do đó: \(BD=75\left(cm\right)\)
Ta có: DH+BH=BD
nên DH=BD-BH=75-63=12cm
Xét tam giác AHB vuông tại H ta có:
AH^2 = AB^2 - BH^2
=> AH^2 = 36 - 12,96 = 23,04
=> AH = 4,8 (cm)
Gọi độ dài CH là x (cm), AC là y (cm)
Xét tam giác AHC vuông tại H, ta có:
y^2 = x^2 + 4,8^2 = x^2 + 23,04 (1)
Xét tam giác ABC vuông tại A ta có:
y^2 = (3,6 + x)^2 - 6^2 = 12,96 + 7,2x + x^2 - 36 = x^2 + 7,2x - 23,04 (2)
(1),(2) => x^2 + 7,2x - 23,04 = x^2 +23,04
=> 7,2x = 46,08
=> x = 6,4 (cm)
Hay CH = 6,4 cm
=> y = 8 (cm)
Hay AC = 8 cm
BC = BH + CH = 3,6 + 6,4 = 10 (cm)
Vậy BC = 10 cm; AH = 4,8cm; CH = 6,4 cm; AC = 8 cm
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AH^2=6^2-3.6^2=23.04\)
hay AH=4,8(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC=6,4\left(cm\right)\)
\(\Leftrightarrow BC=10\left(cm\right)\)
hay AC=8(cm)
tự vẽ hình
có BC=15+20=35
ta có \(\frac{bd}{dc}=\frac{ab}{ac}\)tính chất đường phân giác
\(\Rightarrow\frac{ab}{ac}=\frac{3}{4}\Rightarrow\frac{ab}{3}=\frac{ac}{4}=k\)
ab=3k ac=4k
ta có ab2+ac2=bc2
9k2+16k2=352
25k2=1225
k=7
=>ab=3k=21
ta có ab2=bh.bc
bh=441:35=12.6
tick cho minh nha