Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo tính chất tia phân giác:
$\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}$
Áp dụng hệ thức lượng trong tam giác vuông:
$AB^2=BH.BC$
$AC^2=CH.BC$
$\Rightarrow \frac{BH}{CH}=(\frac{AB}{AC})^2=\frac{9}{16}$
Mà $BH+CH=BC=BD+CD=15+20=35$ (cm)
Do đó:
$BH=35:(9+16).9=12,6$ (cm)
$CH=35:(9+16).16=22,4$ (cm)
tam giác ABC có AD phân giác nênAB/AC=BD/CD=15/20=3/4
BC=15+20=35
AB/AC=3/4=>AB2/AC2=9/16=>AB2/\(\left(AC^2+AB^2\right)=\)9/25
=>\(\frac{AB^2}{BC^2}=\frac{9}{25}\Rightarrow AB=\sqrt{35^2.\frac{9}{25}}=21\)
tam giác vuông ABC có AH là đường cao
BH=\(\frac{AB^2}{BC}=12.6\)
tick nhaaaaaaaaaaaaaaaaaaa
cho tam giác ABC vuông tại A. AB=15, AC=20, đg phân giác BD.
a, Tính AD
b, Gọi H là hình chiếu của A trên BC. Tính AH, HB
c, Cm tam giác AID cân
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{3}{4}\)
hay \(AB=\dfrac{3}{4}AC\)
Ta có: BD+CD=BC
nên BC=17,5cm
Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{25}{16}=\dfrac{1225}{4}\)
\(\Leftrightarrow AC^2=196\)
hay AC=14cm
\(\Leftrightarrow AB=\dfrac{3}{4}AC=10.5\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=8.4\left(cm\right)\\BH=6.3\left(cm\right)\end{matrix}\right.\)
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{9}{16}\)
\(\Leftrightarrow HB=\dfrac{9}{16}HC\)
Ta có: \(HB+HC=BC\)
\(\Leftrightarrow HC\cdot\dfrac{25}{16}=35\)
\(\Leftrightarrow HC=22.4\left(cm\right)\)
\(\Leftrightarrow HB=12.6\left(cm\right)\)
Ta có: BD+CD=BC(D nằm giữa B và C)
nên BC=7,5+10=17,5(cm)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{AB}{AC}=\dfrac{7.5}{10}=\dfrac{3}{4}\)
\(\Leftrightarrow AB=\dfrac{3}{4}AC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{25}{16}=17.5^2\)
\(\Leftrightarrow AC=14\left(cm\right)\)
\(\Leftrightarrow AB=\dfrac{3}{4}\cdot AC=\dfrac{3}{4}\cdot14=10,5\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB\cdot AC=AH\cdot BC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH\cdot17.5=10.5\cdot14\\BH\cdot17.5=10.5^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}AH=8,4\left(cm\right)\\BH=6,3\left(cm\right)\end{matrix}\right.\)
\(BC=BD+CD=17,5\left(cm\right)\)
Áp dụng định lý phân giác:
\(\dfrac{AB}{AC}=\dfrac{BD}{CD}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{4}AC\)
Áp dụng Pitago:
\(AB^2+AC^2=BC^2\Leftrightarrow\left(\dfrac{3}{4}AC\right)^2+AC^2=\left(17,5\right)^2\)
\(\Leftrightarrow AC^2=196\Rightarrow AC=14\)
\(\Rightarrow AB=10,5\left(cm\right)\)
\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=8,4\left(cm\right)\)
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=6,3\left(cm\right)\)
\(HD=BD-BH=1,2\left(cm\right)\)