Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)
b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
bạn tham khảo ở đây,mình từng làm 1 lần rồi
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-tai-aduong-cao-ahhfvuong-goc-voi-ac-tai-f-he-vuong-goc-voi-ab-tai-egoi-o-la-giao-diem-cua-ahefchung-minhaaeabafacbbhhc4oeof.1218858994804
1) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(AE\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(AF\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
a) tam giác AHB vuông tại B có HE là đường cao \(\Rightarrow AE.AB=AH^2\)
tam giác AHC vuông tại C có HF là đường cao \(\Rightarrow AF.AC=AH^2\)
\(\Rightarrow AE.AB=AF.AC\)
b) Vì \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) là hình chữ nhật
\(\Rightarrow O\) là trung điểm EF và \(OE=OF=\dfrac{1}{2}EF=\dfrac{1}{2}AH\)
Tam giác ABC vuông tại A có đường cao AH
\(\Rightarrow BH.CH=AH^2=4.\dfrac{1}{2}AH.\dfrac{1}{2}AH=4.OE.OF\)
cảm ơn bạn