Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCDM vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDM đồng dạng với ΔCAB
b: Xét ΔMAE vuông tại A và ΔMDC vuông tại D có
góc AME=góc DMC
=>ΔMAE đồng dạng với ΔMDC
=>MA/MD=ME/MC
=>MA*MC=MD*ME
c: góc CAE=góc CDE=90 độ
=>CDAE nội tiếp
=>góc MAD=góc MEC
a) Xét ΔAEM vuông tại A và ΔDCM vuông tại D có
\(\widehat{AME}=\widehat{DMC}\)(hai góc đối đỉnh)
Do đó: ΔAEM\(\sim\)ΔDCM(g-g)
b) Xét ΔBAC vuông tại A và ΔBDE vuông tại D có
\(\widehat{B}\) chung
Do đó: ΔBAC\(\sim\)ΔBDE(g-g)
Suy ra: \(\dfrac{BA}{BD}=\dfrac{BC}{BE}\)
hay \(BA\cdot BE=BD\cdot BC\)
c) Ta có: ΔAEM\(\sim\)ΔDCM(cmt)
nên \(\dfrac{MA}{MD}=\dfrac{ME}{MC}\)
hay \(\dfrac{MA}{ME}=\dfrac{MD}{MC}\)
Xét ΔMAD và ΔMEC có
\(\dfrac{MA}{ME}=\dfrac{MD}{MC}\)
\(\widehat{AMD}=\widehat{EMC}\)(hai góc đối đỉnh)
Do đó: ΔMAD\(\sim\)ΔMEC(c-g-c)
Suy ra: \(\widehat{MAD}=\widehat{MEC}\)
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)
Do đó: ADME là hình chữ nhật
a: Xet ΔCDM vuông tại M và ΔCBA vuông tại A có
góc C chung
=>ΔCDM đồng dạng với ΔCBA
b: BM=5a-2a=3a
\(AC=\sqrt{\left(5a\right)^2-\left(3a\right)^2}=4a\)
ΔCDM đồng dạngvơi ΔCBA
=>CD/CB=DM/BA=CM/CA
=>CD/5a=DM/3a=2a/4a=1/2
=>CD=2,5a; DM=1,5a