K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCDM vuông tại D và ΔCAB vuông tại A có

góc C chung

=>ΔCDM đồng dạng với ΔCAB

b: Xét ΔMAE vuông tại A và ΔMDC vuông tại D có

góc AME=góc DMC

=>ΔMAE đồng dạng với ΔMDC

=>MA/MD=ME/MC

=>MA*MC=MD*ME

c: góc CAE=góc CDE=90 độ

=>CDAE nội tiếp

=>góc MAD=góc MEC

 

Hình Tự kẻ

Xét Tam giác ABC và Tam giác DBE có : BAC = BDE ; ABC = DBE

Từ Tam giác ABC và Tam giác DBE đồng dạng suy ra góc C = Góc E

Xét Tam giác MDC và MAE (đồng dạng ) suy ra MA / MD = ME / MC  , suy ra MA.MC=MD.ME

Xét tam giác MAD và Tam giác MCE có : AMD = CME ; MA/MD=ME/MC , Suy ra Tam giác MAD đồng dạng với Tam giác MEC

A B C M D E

a, Xét tam giác ABC và tam giác DBE có :

              góc B chung 

              góc BAC = góc BDE (=90độ )

Do đó : tam giác ABC đồng dạng với tam giác DBE ( g.g )

b, Xét tam giác MAE và tam giác MDC có :

              góc MAE = góc MDC ( = 90độ )

              góc AME = góc DMC ( đối đỉnh )

Do đó : tam giác MAE đồng dạng với tam giác MDC ( g.g )

\(\Rightarrow\frac{MA}{MD}=\frac{ME}{MC}\)

\(\Rightarrow MA.MC=MD.ME\)

c,d :  Tự làm nốt nhé , em mới lớp 7 nên đến đây chịu ạ .

Học tốt

25 tháng 7 2020

Xét tam giác ABC và tam giác DBE, có

25 tháng 7 2020

a. Xét tam giác ABC và tam giác DBE, có:

góc BAC = BDE (=90 độ)

góc B chung

nên tam giác ABC đồng dạng với tam giác DBE (g.g)

b. Ta có: góc BAC + góc CAE = 180 độ (do kề bù)

mà góc BAC = 90 độ => góc CAE = 180 - 90 = 90 (độ) hay góc MAE = 90 độ

Xét tam giác MAE và tam giác MDC, có

góc MAE = góc MDC (=90 độ)

góc AME = góc DMC (đối đỉnh)

=> tam giác MAE đồng dạng với tam giác MDC (g.g)

=> \(\frac{MA}{MD}=\frac{ME}{MC}\Rightarrow MA.MC=ME.MD\left(đpcm\right)\)

c. Ta có: \(\frac{MA}{MD}=\frac{ME}{MC}\Rightarrow\frac{MA}{ME}=\frac{MD}{MC}\)

Xét tam giác MDA và tam giác MEC, có:

góc DMA = góc EMC

\(\frac{MA}{ME}=\frac{MD}{MC}\)

nên tam giác MDA đồng dạng với tam giác MEC (g.c.g)

Vì tam giác MAE vuông tại A nên: góc AEM + góc AME = 90 độ

Vì tam giác MDC vuông tại D nên: góc DCM + góc DMC = 90 độ

mà góc AME = góc AMC 9 (đối đỉnh)

nên góc AEM = góc DCM

Xét tam giác ABC và tam giác AME, có

góc BAC = góc MAE (= 90 độ)

góc ACB = góc AEM

nên tam giác ABC đồng dạng tam giác AME (g.g)

=> \(\frac{AB}{AM}=\frac{AC}{AE}\Rightarrow AB.AE=AM.AC\)

a) Xét ΔAEM vuông tại A và ΔDCM vuông tại D có 

\(\widehat{AME}=\widehat{DMC}\)(hai góc đối đỉnh)

Do đó: ΔAEM\(\sim\)ΔDCM(g-g)

b) Xét ΔBAC vuông tại A và ΔBDE vuông tại D có 

\(\widehat{B}\) chung

Do đó: ΔBAC\(\sim\)ΔBDE(g-g)

Suy ra: \(\dfrac{BA}{BD}=\dfrac{BC}{BE}\)
hay \(BA\cdot BE=BD\cdot BC\)

c) Ta có: ΔAEM\(\sim\)ΔDCM(cmt)

nên \(\dfrac{MA}{MD}=\dfrac{ME}{MC}\)

hay \(\dfrac{MA}{ME}=\dfrac{MD}{MC}\)

Xét ΔMAD và ΔMEC có 

\(\dfrac{MA}{ME}=\dfrac{MD}{MC}\)

\(\widehat{AMD}=\widehat{EMC}\)(hai góc đối đỉnh)

Do đó: ΔMAD\(\sim\)ΔMEC(c-g-c)

Suy ra: \(\widehat{MAD}=\widehat{MEC}\)

a) Xét tứ giác ADME có 

AD//ME

DM//AE

Do đó: ADME là hình bình hành

b) Xét ΔEMC có \(\widehat{EMC}=\widehat{C}\left(=\widehat{B}\right)\)

nên ΔEMC cân tại E

Suy ra: EM=EC

Ta có: AE+EC=AC(E nằm giữa A và C)

mà AE=DM(AEMD là hình bình hành

mà EM=EC(cmt)

nên AC=MD+ME

2 tháng 10 2021

cho mình hỏi ngu tí là ở câu b đó ạ,từ đâu mà suy ra được góc EMC = C(=B) ạ :((

4 tháng 1 2017

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC