Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCDM vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDM đồng dạng với ΔCAB
b: Xét ΔMAE vuông tại A và ΔMDC vuông tại D có
góc AME=góc DMC
=>ΔMAE đồng dạng với ΔMDC
=>MA/MD=ME/MC
=>MA*MC=MD*ME
c: góc CAE=góc CDE=90 độ
=>CDAE nội tiếp
=>góc MAD=góc MEC
Hình Tự kẻ
Xét Tam giác ABC và Tam giác DBE có : BAC = BDE ; ABC = DBE
Từ Tam giác ABC và Tam giác DBE đồng dạng suy ra góc C = Góc E
Xét Tam giác MDC và MAE (đồng dạng ) suy ra MA / MD = ME / MC , suy ra MA.MC=MD.ME
Xét tam giác MAD và Tam giác MCE có : AMD = CME ; MA/MD=ME/MC , Suy ra Tam giác MAD đồng dạng với Tam giác MEC
a, Xét tam giác ABC và tam giác DBE có :
góc B chung
góc BAC = góc BDE (=90độ )
Do đó : tam giác ABC đồng dạng với tam giác DBE ( g.g )
b, Xét tam giác MAE và tam giác MDC có :
góc MAE = góc MDC ( = 90độ )
góc AME = góc DMC ( đối đỉnh )
Do đó : tam giác MAE đồng dạng với tam giác MDC ( g.g )
\(\Rightarrow\frac{MA}{MD}=\frac{ME}{MC}\)
\(\Rightarrow MA.MC=MD.ME\)
c,d : Tự làm nốt nhé , em mới lớp 7 nên đến đây chịu ạ .
Học tốt
a. Xét tam giác ABC và tam giác DBE, có:
góc BAC = BDE (=90 độ)
góc B chung
nên tam giác ABC đồng dạng với tam giác DBE (g.g)
b. Ta có: góc BAC + góc CAE = 180 độ (do kề bù)
mà góc BAC = 90 độ => góc CAE = 180 - 90 = 90 (độ) hay góc MAE = 90 độ
Xét tam giác MAE và tam giác MDC, có
góc MAE = góc MDC (=90 độ)
góc AME = góc DMC (đối đỉnh)
=> tam giác MAE đồng dạng với tam giác MDC (g.g)
=> \(\frac{MA}{MD}=\frac{ME}{MC}\Rightarrow MA.MC=ME.MD\left(đpcm\right)\)
c. Ta có: \(\frac{MA}{MD}=\frac{ME}{MC}\Rightarrow\frac{MA}{ME}=\frac{MD}{MC}\)
Xét tam giác MDA và tam giác MEC, có:
góc DMA = góc EMC
\(\frac{MA}{ME}=\frac{MD}{MC}\)
nên tam giác MDA đồng dạng với tam giác MEC (g.c.g)
Vì tam giác MAE vuông tại A nên: góc AEM + góc AME = 90 độ
Vì tam giác MDC vuông tại D nên: góc DCM + góc DMC = 90 độ
mà góc AME = góc AMC 9 (đối đỉnh)
nên góc AEM = góc DCM
Xét tam giác ABC và tam giác AME, có
góc BAC = góc MAE (= 90 độ)
góc ACB = góc AEM
nên tam giác ABC đồng dạng tam giác AME (g.g)
=> \(\frac{AB}{AM}=\frac{AC}{AE}\Rightarrow AB.AE=AM.AC\)
a) Xét ΔAEM vuông tại A và ΔDCM vuông tại D có
\(\widehat{AME}=\widehat{DMC}\)(hai góc đối đỉnh)
Do đó: ΔAEM\(\sim\)ΔDCM(g-g)
b) Xét ΔBAC vuông tại A và ΔBDE vuông tại D có
\(\widehat{B}\) chung
Do đó: ΔBAC\(\sim\)ΔBDE(g-g)
Suy ra: \(\dfrac{BA}{BD}=\dfrac{BC}{BE}\)
hay \(BA\cdot BE=BD\cdot BC\)
c) Ta có: ΔAEM\(\sim\)ΔDCM(cmt)
nên \(\dfrac{MA}{MD}=\dfrac{ME}{MC}\)
hay \(\dfrac{MA}{ME}=\dfrac{MD}{MC}\)
Xét ΔMAD và ΔMEC có
\(\dfrac{MA}{ME}=\dfrac{MD}{MC}\)
\(\widehat{AMD}=\widehat{EMC}\)(hai góc đối đỉnh)
Do đó: ΔMAD\(\sim\)ΔMEC(c-g-c)
Suy ra: \(\widehat{MAD}=\widehat{MEC}\)
a) Xét tứ giác ADME có
AD//ME
DM//AE
Do đó: ADME là hình bình hành
b) Xét ΔEMC có \(\widehat{EMC}=\widehat{C}\left(=\widehat{B}\right)\)
nên ΔEMC cân tại E
Suy ra: EM=EC
Ta có: AE+EC=AC(E nằm giữa A và C)
mà AE=DM(AEMD là hình bình hành
mà EM=EC(cmt)
nên AC=MD+ME
cho mình hỏi ngu tí là ở câu b đó ạ,từ đâu mà suy ra được góc EMC = C(=B) ạ :((
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC