Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ABD và BDM
ABD=DBM (tia BD là tia p.giác của ABM)
BD là cạnh chung
BA=BM (gt)
vậy tan giác ABD=BDM
\(\Rightarrow BAD=BMD\)=90
vậy DM vuông góc với BC
Mình làm mẫu cho bạn câu a) nhé
a) Theo định lí Pytago ta có :
BC2 = AB2 + AC2
152 = AB2 + AC2
AB : AC = 3:4
=> \(\frac{AB}{3}=\frac{AC}{4}\)=> \(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}\)và AB2 + AC2 = 152
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}=\frac{AB^2+AC^2}{3^2+4^2}=\frac{15^2}{25}=\frac{225}{25}=9\)
\(\frac{AB^2}{3^2}=9\Rightarrow AB^2=81\Rightarrow AB=\sqrt{81}=9cm\)
\(\frac{AC^2}{4^2}=9\Rightarrow AC^2=144\Rightarrow AC=\sqrt{144}=12cm\)
Ý b) tương tự nhé
Từ (gt) :AB/3=AC/4 suy ra AB=AC/4*3
AD định lí pythagore vào tam giác ABC ta có:BC^2=AB^2+AC^2=(AC/4*3)^2+AC^2=9/16*AC^2+AC^2
AC^2*(9/16+1)=BC^2=150^2=22500 suy ra AC^2=22500/(9/16+1)=14400 suy ra AC= căn14400 =120
Suy ra AB=120*3/4=90
Vậy AB=90,AC=120
(đơn vị tự thêm)
Gọi 3 cạnh AB; BC: AC của tam giác ABC lần lượt là a, b, c. ( a, b, c >0)
Ta có: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)(1)
Theo bài ra tam giác ABC vuông tại A
=> Diện tích tam giác ABC là: \(\frac{1}{2}ac=24\Leftrightarrow ac=48\)(2)
Từ (1) => \(\frac{a}{3}.\frac{a}{3}=\frac{a}{3}.\frac{c}{5}=\frac{ac}{15}=\frac{48}{15}\)
=> \(\frac{a^2}{9}=\frac{48}{15}\)
=> a => b, c.
Tuy nhiên em kiểm tra lại đề bài. Vì số xấu.