Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm mẫu cho bạn câu a) nhé
a) Theo định lí Pytago ta có :
BC2 = AB2 + AC2
152 = AB2 + AC2
AB : AC = 3:4
=> \(\frac{AB}{3}=\frac{AC}{4}\)=> \(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}\)và AB2 + AC2 = 152
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}=\frac{AB^2+AC^2}{3^2+4^2}=\frac{15^2}{25}=\frac{225}{25}=9\)
\(\frac{AB^2}{3^2}=9\Rightarrow AB^2=81\Rightarrow AB=\sqrt{81}=9cm\)
\(\frac{AC^2}{4^2}=9\Rightarrow AC^2=144\Rightarrow AC=\sqrt{144}=12cm\)
Ý b) tương tự nhé
Ta có : Đặt \(\frac{AB}{3}=\frac{AC}{4}=k\Rightarrow\left[\begin{matrix}AB=3k\\BC=4k\end{matrix}\right.\)
áp dụng định lý Py-ta-go trong tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\\ \Rightarrow9k^2+16k^2=15^2\\ \Rightarrow25k^2=225\\ \Rightarrow k=3\)
\(\left[\begin{matrix}AB=9\\AC=12\end{matrix}\right.\)
Vậy AB=9cm;AC=12cm
a,Ta có : \(\dfrac{AB}{AC}=0,75\Rightarrow\dfrac{AB}{0,75}=AC\Rightarrow\dfrac{AB^2}{\dfrac{9}{16}}\:=AC^2\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{BA^2}{\dfrac{9}{16}}=AC^2=\dfrac{AB^2+AC^2}{\dfrac{9}{16}+1}=\dfrac{225}{\dfrac{25}{16}}=144\Rightarrow AB=9cm;AC=12cm\)
b, Ta có : \(S_{ABC}=\dfrac{1}{2}AB.AC;S_{ABC}=\dfrac{1}{2}AH.BC\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{108}{15}cm\)
a,Ta có: \(\dfrac{AB}{AC}=0,75=\dfrac{3}{4}\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{9}{16}\)
\(\Rightarrow\dfrac{AB^2}{9}=\dfrac{AC^2}{16}=\dfrac{AB^2+AC^2}{9+16}=\dfrac{BC^2}{25}=\dfrac{15^2}{25}=9\)
\(\Rightarrow AB^2=9.9=81\Leftrightarrow AB=9\left(cm\right);AC^2=9.16=144\Leftrightarrow AC=12\left(cm\right)\)
b, Ta có: \(S_{ABC}=\dfrac{1}{2}.AB.AC\)
Mà \(S_{ABC}=\dfrac{1}{2}.AH.BC\)
\(\Rightarrow AB.AC=AH.BC\Leftrightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{9.12}{15}=7,2\left(cm\right)\)
a,
Áp dụng định lí Py-ta-go, ta có:
AB2 + AC2 = BC2
=> AB2 + AC2 = 225
Lại có:
AB:AC = 3:4
\(\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{9}{16}\)
Đặt tỉ số trên bằng k
=> AB2 = 9k và AC2 = 16k
=> AB2 + AC2 = 9k + 16k = 25k = 225
=> k = 9
\(\Rightarrow\left\{{}\begin{matrix}AB^2=9\cdot9=81\\AC^2=9\cdot16=144\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=9cm\\AC=12cm\end{matrix}\right.\)
b,
Áp dụng định lí Py-ta-go, ta có:
AB2 + AC2 = BC2
=> 576 + AC2 = BC2
Lại có:
AC:BC = 5:13
\(\Rightarrow\dfrac{AC^2}{BC^2}=\dfrac{25}{169}\)
Đặt tỉ số trên bằng k
=> AC2 = 25k và BC2 = 169k
=> 576 + 25k = 169k
=> 576 = 144k
=> k = 4
=> \(\left\{{}\begin{matrix}AC^2=4\cdot25=100\\BC^2=4\cdot169=676\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AC=10cm\\BC=26cm\end{matrix}\right.\)
Hình đơn giản nên tự vẽ nhá.
a) Áp dụng định lý Py-ta-go vào tam giác vuông ABC:
AC^2 + AB^2 = BC^2
=> AC^2 = BC^2 - AB^2 = 15^2 - 9^2 = 225 - 81 = 144
=> AC = căn 144 = 12 (cm)
b) Xét tam giác BIA và tam giác BIH:
BAI^ = BHI^ = 90o
IBA^ = IBH^
BI chung
=> tam giác BIA = tam giác BIH (cạnh huyền_góc nhọn)
=> BA = BH (2 cạnh tương ứng)
=> Tam giác AHB cân
a.Ta có: AB=9cm ; BC=15cm
Theo định lý Py-ta-go: BC2 = AB2 +AC2
=>AC2 =BC2 - AB2 =152 - 92 = 225-81= 144
AC2 = 144 =>AC=\(\sqrt{144}\)=12cm
b.Ta có: IH vuông góc BC tại H => tam giác BIH vuông tại H
Góc A vuông ( tam giác ABC vuông tại A ) => tsm giác ABI vuông tại A
Xét tg BIH và tg ABI có:
- góc ABI = góc HBI (BI là phân giác góc B)
- BI chung
=> BIH = ABI ( cạnh huyền - góc nhọn)
Do đó: AB = BH
mà đây là 2 cạnh bên của tam giác ABH => ABH cân tại H