K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: AM=5cm

2: Xét tứ giác AMCE có

D là trung điểm của AC

D là trung điểm của ME

Do đó: AMCE là hình bình hành

mà MA=MC

nên AMCE là hình thoi

3 Xét tứ giác ABME có 

ME//AB

ME=AB

Do đó: ABME là hình bình hành

4 tháng 1 2022

1. Xét tam giác ABC vuông tại A: 

\(BC^2=AB^2+AC^2\) (Định lý Pytago).

\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10\left(cm\right).\)

Xét tam giác ABC vuông tại A: AM là trung tuyến (gt).

\(\Rightarrow\) \(AM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right).\)

2. M là trung điểm của BC (AM là trung tuyến của tam giác ABC).

\(\Rightarrow\) \(MC=MB.\)

Mà \(AM=\dfrac{1}{2}BC\left(cmt\right).\)

\(\Rightarrow\) \(MC=MB=AM=\dfrac{1}{2}BC.\)

Xét tứ giác AMCE: 

+ D là trung điểm AC (gt).

+ D là trung điểm ME (E là điểm đối xứng với M qua D).

\(\Rightarrow\) Tứ giác AMCE là hình bình hành (dhnb).

Mà \(AM=MC\) (cmt).

\(\Rightarrow\) Tứ giác AMCE là hình thoi (dhnb).

3. Tứ giác AMCE là hình thoi (cmt). \(\Rightarrow\) \(AE=MC\) và \(AE\) // \(MC\) (Tính chất hình thoi).

Mà \(MB=MC\left(cmt\right).\)

\(\Rightarrow\) \(AE=MB.\)

Xét tứ giác AEMB có:

\(AE=MB\left(cmt\right).\)

+  \(AE\) // \(MB\left(cmt\right).\)

\(\Rightarrow\) Tứ giác ABME là hình bình hành (dhnb).

 

1: BC=5cm

Xét ΔABC có

D là trung điểm của AB

M là trung điểm của BC

Do đó: DM là đường trung bình

=>DM=AC/2=2(cm)

2: Xét tứ giác ACME có 

ME//AC

ME=AC

Do đó: ACME là hình bình hành

Xét tứ giác AEBM có

D là trung điểm của ME

D là trung điểm của AB

Do đó: AEBM là hình bình hành

mà MA=MB

nên AEBM là hình thoi

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

23 tháng 12 2021

a: BC=20cm

AM=10cm

b: Xét tứ giác AMCE có 

N là trung điểm của AC

N là trung ddierm của ME

Do đó: AMCE là hình bình hành

mà MA=MC

nên AMCE là hình thoi

23 tháng 12 2021

a: BC=20cm

AM=10cm

b: Xét tứ giác AMCE có 

N là trung điểm của AC

N là trung ddierm của ME

Do đó: AMCE là hình bình hành

mà MA=MC

nên AMCE là hình thoi