K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2018

Ta có I là trung điểm AC

Nên OI vuông góc AC (quan hệ đường kính và dây)

Do đó \(\widehat{OID}=90độ\)

\(\widehat{OBD}=90độ\)(tính chất tiếp tuyến)

Suy ra\(\widehat{OID}+\widehat{OBD}=180độ\)

Vậy tứ giác OBDI nội tiếp (tổng 2 góc đối của tứ giác bằng 180 độ)

b) Ta có \(\widehat{ACB}=90độ\)(góc nội tiếp chắn nửa đường tròn)

Xét 2 tam giác vuông IBC và ODB có

\(\widehat{BIC}=\widehat{DOB}\)(tứ giác OBDI nội tiếp)

Nên ΔIBC ~ ΔODB

Do đó \(\frac{IB}{OD}\)=\(\frac{BC}{DB}\)

Hay IB.DB = OD.BC

a: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC
hay ΔABC cân tại A

mà \(\widehat{BAC}=60^0\)

nên ΔABC đều

16 tháng 9 2019

Chọn đáp án D

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

* Gọi (O’) là đường tròn đi qua D và tiếp xúc với AB tại B.

Đường tròn (O’) cắt CB tại F khác B. Chứng minh E F   / /   A B .

Ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Hai góc ở vị trí đồng vị  ⇒   E F / / A B

Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:a) Tứ giác BCDE nội tiếp.b)góc AFE= ACE.Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt...
Đọc tiếp

Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:

a) Tứ giác BCDE nội tiếp.

b)góc AFE= ACE.

Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt nhau tại K. Chứng minh rằng:

a) Các tam giác KAB và IBC là những tam giác đêu.

b) Tứ giác KIBC nội tiếp.

Bài 6. Cho nửa đường tròn (0) đường kính AB và tia tiếp tuyến Bx của nửa đường tròn. Trên tia Bx lấy hai điểm C và D (C nằm giữa B và D). Các tia AC và BD lần lượt cắt đường tròn tại E và F. Hai dây AE và BF cắt nhau tại M. Hai tia AF và BE cắt nhau tại N. Chứng minh rằng:

a) Tứ giác FNEM nội tiêp.

b) Tứ giác CDFE nội tiếp.

Bài 7. Cho tam giác ABC. Hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC.

a) Chứng minh rằng tứ giác ABDC nội tiếp được đường tròn. Xác định tâm 0 của đường tròn đó

b) Đường thẳng DH cắt đường tròn (0) tại điểm thứ hai là I. Chứng minh rằng năm điểm A, I, F, H, E cùng nằm trên một đường tròn

Các bạn giải giúp mình các bài này nhé, mình cảm ơn nhiều lắm

0
19 tháng 2 2017

qua A,P vẽ đương tron tâm C là như thế nào vậy bạn