Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho đường tròn (O) và dây cung AB( AB không phải là đường kính) cố định. P là điểm di động trên đoạn AB.( P khác A,B và P khác trung điểm của AB). Đường tròn tâm C, D đi qua điểm P tiếp xúc với đường tròn (O) lần lượt tại A và B. Hai đường tròn (C) , (D). cắt nhau tại N( N khác P) . CMR:
a. ˆANP=ˆBNPANP^=BNP^ và 4 điểm O,D,C,N cùng thuộc 1 đường tròn.
b. Đường trung trực của ON luôn đi qua điểm cố định khi P di động
a) Tam giác ABC nội tiếp đường tròn (O) đường kính BC
=> OA=OB=OC và O là trung điểm của BC
=> Tam giác ABC vuông tại A
=> góc BAC = 90 độ
b) DO tam giác HAK nội tiếp đường tròn (I)
Lại có góc HAK = 90 độ
=> HK là đường kính của (I)
=> HK đi qua I
=> H,I,K thẳng hàng
c) Đề bài ghi ko rõ
d) 3 điểm nào?
a, Xét tứ giác CDME có
^MEC = ^MDC = 900
mà 2 góc này kề, cùng nhìn cạnh MC
Vậy tứ giác CDME là tứ giác nt 1 đường tròn
b, bạn ktra lại đề
qua A,P vẽ đương tron tâm C là như thế nào vậy bạn