Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A)XÉT \(\Delta ABH\)VÀ \(\Delta ADH\)CÓ
\(BH=HD\left(gt\right);\widehat{AHB}=\widehat{AHD}=90^o;\)AH LÀ CẠNH CHUNG
=> \(\Delta ABH\)=\(\Delta ADH\)(C-G-C)
=> AB = AD ( hai cạnh tương ứng )
=> \(\Delta ABD\)là tam giác cân
nhắc lại kiến thức: mà trong tam giác cân có một góc bằng 60 độ suy ra tam giác đó là tam giác đều
MÀ \(\widehat{ABH}=60^o\)hay \(\widehat{ABD}=60^o\)
=> \(\Delta ABD\)là tam giác đều
B) XÉT \(\Delta ABH\)CÓ
\(\widehat{BAH}+\widehat{ABH}+\widehat{AHB}=180^o\Leftrightarrow\widehat{BAH}+60^o+90^o=180^o\Leftrightarrow\widehat{BAH}=180^o-\left(60^o+90^o\right)=30^o\)
vì \(\Delta ABH\)=\(\Delta ADH\)(cmt)
\(\Rightarrow\widehat{BAH}=\widehat{DAH}=30^o\)
có \(\widehat{BAH}+\widehat{DAH}+\widehat{DAC}=90^o\Leftrightarrow30^o+30^o+\widehat{DAC}=90^o\Leftrightarrow\widehat{DAC}=90^o-\left(30^o+30^o\right)=30^o\)
ta có \(\widehat{AHD}+\widehat{EDH}=90^o+90^o=180^o\)
hai góc này ở vị trí trong cùng phía bù nhau
=> AH // DE
=>\(\widehat{HAD}=\widehat{ADE}=30^o\)
ta có \(\widehat{DAC}=\widehat{ADE}\)hay \(\widehat{EAD}=\widehat{ADE}\)
=> \(\Delta AED\)là tam giác cân
c) xét \(\Delta ABC\)CÓ
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Leftrightarrow90^o+60^o+\widehat{C}=180^o\Leftrightarrow\widehat{C}=180^o-\left(90^o+60^o\right)=30^o\)
xét \(\Delta AHC\)VÀ \(\Delta CFA\)CÓ
AC LÀ CẠNH CHUNG
\(\widehat{H}=\widehat{F}=90^o\)
\(\widehat{ACH}=\widehat{CAF}=30^o\)
=> \(\Delta AHC\)=\(\Delta CFA\)(ch-gn)
\(\Rightarrow AH=CF\left(1\right)\)
vì \(\Delta AHC\)=\(\Delta CFA\)(cmt)
\(\Rightarrow HC=FA\)
xét \(\Delta HAF\)VÀ \(\Delta FCH\)CÓ
\(AF=CH\left(cmt\right);\widehat{HAF}=\widehat{FCH}=30^o;HA=FC\left(cmt\right)\)
=>\(\Delta HAF\)=\(\Delta FCH\)(c-g-c)
\(\Rightarrow\widehat{AFH}=\widehat{CHF}\)HAY \(\widehat{AFH}=\widehat{DHF}\)
XÉT \(\Delta HAF\)CÓ
\(\widehat{HAF}+\widehat{AHD}+\widehat{DHF}+\widehat{AFH}=180^o\)
vì\(\widehat{AFH}=\widehat{DHF}\)
\(\Leftrightarrow30^o+90^o+2\widehat{AFH}=180^o\)
\(\Leftrightarrow2\widehat{AFH}=60^o\)
\(\Leftrightarrow\widehat{AFH}=30^o\)
xét \(\Delta HAF\)có
\(\widehat{AFH}=\widehat{HAF}=30^o\)
=>\(\Delta HAF\)cân tại H
=> \(AH=HF\left(2\right)\)
TỪ (1) VÀ (2)
\(\Rightarrow AH=HF=FC\left(đpcm\right)\)
Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath
a, Xét tg BAE và tg BDE ( \(\widehat{BAE}=\widehat{BDE}=90^0\))
BA=BD (gt)
BE chung
=> tg BAE = tg BDE ( ch-cgv)
=> AE=ED
Ta có \(\hept{\begin{cases}BA=BD\left(gt\right)\\AE=ED\left(cmt\right)\end{cases}}< =>\)BE trung trực AD (đpcm)
b, +ED vuông BC
+ AH vuông BC
=> AH//DE
=> \(\widehat{HAD}=\widehat{ADE}\)( So le trong) (2)
Lại có gọi m là giao 2 đường thẳng BE và AD
vì BE trung trực AD =>+ \(\widehat{AME}=\widehat{EMD}=90^{0^{ }}\)
Xét tg AEM và tg DEM có \(\left(\widehat{AME}=\widehat{EMD}=90^0\left(cmt\right)\right)\)
+ AD = ED (cma)
+ EM chung
=> tg AEM = tg DEM ( ch-cgv)
=> \(\widehat{DAE}=\widehat{ADE}\)(2)
tỪ (1) VÀ (2) => \(\widehat{HAD}=\widehat{DAE}\)=> AD phân giác góc AHC