K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2022

a, △ABC vuông tại A có AH là đường cao.

\(\Rightarrow\left\{{}\begin{matrix}HB.BC=AB^2\\HC.BC=AC^2\end{matrix}\right.\) (hệ thức lượng trong tam giác vuông)

\(\Rightarrow\dfrac{HB.BC}{HC.BC}=\dfrac{HB}{HC}=\dfrac{AB^2}{AC^2}\)

b, △ABH vuông tại H có HD là đường cao.

\(\Rightarrow BD.AB=BH^2\) (hệ thức lượng trong tam giác vuông)

\(\Rightarrow BD=\dfrac{BH^2}{AB}\left(1\right)\)

△ACH vuông tại H có HE là đường cao.

\(\Rightarrow EC.AC=CH^2\) (hệ thức lượng trong tam giác vuông)

\(\Rightarrow EC=\dfrac{CH^2}{AC} \left(2\right)\)

Từ (1), (2) suy ra:

\(\dfrac{DB}{EC}=\dfrac{\dfrac{BH^2}{AB}}{\dfrac{CH^2}{AC}}=\left(\dfrac{BH}{CH}\right)^2.\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}.\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3\)

c, Có: \(\left\{{}\begin{matrix}BD.AB=BH^2\\EC.AC=CH^2\end{matrix}\right.\Rightarrow BD.EC.AB.AC=BH^2.CH^2\)

Mà \(\left\{{}\begin{matrix}BH.CH=AH^2\\AH.BC=AB.AC\end{matrix}\right.\)

\(\Rightarrow BD.EC.AH.BC=AH^4\)

\(\Rightarrow BD.EC.BC=AH^3\)

 

 

29 tháng 6 2022

You yourself draw the figure.

a) Consider the right triangle ABC (which has \(\widehat{A}=90^o\)) has the height AH, thus, we have \(AB^2=HB.BC\) 

Similarly, we have \(AC^2=HC.BC\) 

From these, we get \(\dfrac{HB.BC}{HC.BC}=\dfrac{AB^2}{AC^2}\Leftrightarrow\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)

b) We can easily prove that \(\Delta BDH~\Delta HEC\left(a.a\right)\), therefore, \(\dfrac{DB}{HE}=\dfrac{HB}{HC}\)

Then, we can see that \(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\), so, we have \(\dfrac{DB}{HE}=\left(\dfrac{AB}{AC}\right)^2\), and the thing we have to prove is the same of \(\dfrac{DB}{HE}=\dfrac{DB}{EC}\) or \(HE=EC\), but this is clearly wrong. You have to edit the title.

c) This title is also wrong. \(BD.CE.BC=DB^3\Leftrightarrow CE.BC=DB^2\) which make no sense.

18 tháng 7 2021

a) Ta có: \(\left(\dfrac{AB}{AC}\right)^2=\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}=\dfrac{BH}{HC}\)

b) Ta có: \(\left(\dfrac{CA}{AB}\right)^4=\left(\dfrac{CA^2}{AB^2}\right)^2=\left(\dfrac{CH.BC}{BH.BC}\right)^2=\dfrac{CH^2}{BH^2}=\dfrac{CE.CA}{BD.BA}\)

\(=\dfrac{CE}{BD}.\dfrac{CA}{BA}\Rightarrow\left(\dfrac{CA}{AB}\right)^3=\dfrac{CE}{BD}\)

c) Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2\)

\(=BD.BA.CE.CA=BD.CE\left(AB.AC\right)=BD.CE.AH.BC\)

\(\Rightarrow BD.CE.BC=AH^3\)

d) Vì \(\angle HDA=\angle HEA=\angle DAE=90\Rightarrow ADHE\) là hình chữ nhật

\(\Rightarrow AH=DE\Rightarrow AH^2=DE^2=DH^2+HE^2\)

Ta có: \(3AH^2+BD^2+CE^2=2AH^2+\left(DH^2+BD\right)^2+\left(HE^2+CE^2\right)\)

\(=2.HB.HC+BH^2+CH^2=\left(BH+CH\right)^2=BC^2\)

10 tháng 10 2022

Bạn ơi chỉ thêm cho mik câu b vs ạ

30 tháng 10 2021

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

29 tháng 8 2017

câu b là \(\dfrac{AB^3}{AC^3}=\dfrac{DB}{EC}\)

mình ghi nhầm

24 tháng 9 2021

Xét tứ giác ADHE có:

\(\widehat{BAC}=\widehat{ADH}=\widehat{AEH}=90^0\)

=> Tư giác ADHE là hình chữ nhật

\(\Rightarrow DE=AH\left(1\right)\)

Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH

\(AH^2=HB.HC\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow DE^2=HB.HC\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\left(1\right)\)

Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

Suy ra: AH=DE(2)

Từ (1) và (2) suy ra \(DE^2=HB\cdot HC\)

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cmChứng minh ABC vuông tại A và tính độ dài đường cao AH;Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;Chứng minh: AEF và ABC đồng dạng.Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cmTính độ dài các đoạn thẳng: AB, AC, AH.Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE =...
Đọc tiếp

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc 

Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm, 
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH. 
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN

1
9 tháng 5 2021

mình chịu thoiii

a: \(\dfrac{AB^2}{AC^2}=\dfrac{HB\cdot BC}{HC\cdot BC}=\dfrac{HB}{HC}\)

b: \(\dfrac{DB}{EC}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}\)

\(=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}=\left(\dfrac{HB}{HC}\right)^2\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)