K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a: Xét ΔABC vuông tại B có 

\(AB^2+BC^2=AC^2\)

hay BC=20(cm)

Xét ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC

nên \(\left\{{}\begin{matrix}BA^2=AH\cdot AC\\BC^2=CH\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=9\left(cm\right)\\CH=16\left(cm\right)\end{matrix}\right.\)

chị ơi chị làm hết giúp em với ạ

1) Xét tứ giác AEHD có 

\(\widehat{EAD}=90^0\)

\(\widehat{AEH}=90^0\)

\(\widehat{ADH}=90^0\)

Do đó: AEHD là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: AH=ED(Hai đường chéo của hình chữ nhật AEHD)

Ta có: AEHD là hình chữ nhật(cmt)

nên HE=AD(Hai cạnh đối)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:

\(HD^2=AD\cdot DB\)

mà AD=HE(cmt)

nên \(HD^2=HE\cdot DB\)

2) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:

\(AD\cdot AB=AH^2\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\)

Ta có: \(AD\cdot AB+AE\cdot AC\)

\(=AH^2+AH^2\)

\(=2AH^2\)

\(=2\cdot DE^2\)(đpcm)

3) 

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có HA là đường cao ứng với cạnh huyền CB, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{BC}\cdot\dfrac{BC}{AC^2}=\dfrac{AB^2}{AC^2}\)(đpcm)

12 tháng 8 2018

i don't know ......

sorry ......

nha ....

18 tháng 7 2021

a) Ta có: \(\left(\dfrac{AB}{AC}\right)^2=\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}=\dfrac{BH}{HC}\)

b) Ta có: \(\left(\dfrac{CA}{AB}\right)^4=\left(\dfrac{CA^2}{AB^2}\right)^2=\left(\dfrac{CH.BC}{BH.BC}\right)^2=\dfrac{CH^2}{BH^2}=\dfrac{CE.CA}{BD.BA}\)

\(=\dfrac{CE}{BD}.\dfrac{CA}{BA}\Rightarrow\left(\dfrac{CA}{AB}\right)^3=\dfrac{CE}{BD}\)

c) Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2\)

\(=BD.BA.CE.CA=BD.CE\left(AB.AC\right)=BD.CE.AH.BC\)

\(\Rightarrow BD.CE.BC=AH^3\)

d) Vì \(\angle HDA=\angle HEA=\angle DAE=90\Rightarrow ADHE\) là hình chữ nhật

\(\Rightarrow AH=DE\Rightarrow AH^2=DE^2=DH^2+HE^2\)

Ta có: \(3AH^2+BD^2+CE^2=2AH^2+\left(DH^2+BD\right)^2+\left(HE^2+CE^2\right)\)

\(=2.HB.HC+BH^2+CH^2=\left(BH+CH\right)^2=BC^2\)

10 tháng 10 2022

Bạn ơi chỉ thêm cho mik câu b vs ạ

a: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đườg cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=AH^2\left(3\right)\)

Từ (1), (2) và (3) suy ra \(AD\cdot AB=AE\cdot AC=HB\cdot HC\)

b: \(DA\cdot DB+EA\cdot EC\)

\(=HD^2+HE^2\)

\(=DE^2=AH^2\)

c: \(AE\cdot AB+AD\cdot AC\)

\(=\dfrac{AH^2}{AC}\cdot AB+\dfrac{AH^2}{AB}\cdot AC\)

\(=AH^2\left(\dfrac{AB}{AC}+\dfrac{AC}{AB}\right)=AH^2\cdot\dfrac{AB^2+AC^2}{AB\cdot AC}\)

\(=\dfrac{AH^2\cdot BC^2}{AH\cdot BC}=AH\cdot BC\)

\(=AB\cdot AC\)

17 tháng 6 2018

sai đề bài bạn ạ

17 tháng 6 2018

vì tam giác ABC vuông tại A rùi nên AC là đường cao, chỉ có đg cao CH thui bạn

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:

\(AD\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)