Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ΔAHC vuông tại H(Gt)
mà HN là đường trung tuyến ứng với cạnh huyền AC(gt)
nên HN=AN
Ta có: ΔAHB vuông tại H(gt)
mà HM là đường trung tuyến ứng với cạnh huyền AB(gt)
nên HM=AM
Xét ΔNAM và ΔNHM có
NA=NH(cmt)
MA=MH(cmt)
NM chung
Do đó: ΔNAM=ΔNHM(c-c-c)
Suy ra: \(\widehat{NAM}=\widehat{NHM}\)(hai góc tương ứng)
mà \(\widehat{NAM}=90^0\)(gt)
nên \(\widehat{NHM}=90^0\)
hay MH\(\perp\)NH(đpcm)
1: ΔABC cân tại A
mà AH là đường cao
nen H là trung điểm của BC và AH là phân giác của góc BAC
=>HB=HC
2: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>AM=AN
=>ΔAMN cân tại A
Tam giác ABH có góc BHA=90○, M là trung điểm của AB(gt)=>MH là đường trung tuyến=>MH=MA=\(\frac{1}{2}\)AB (1)
Tam giác ACH có góc CHA=90○, N là trung điểm của AC(gt)=>NH là duogn72 trugn tuyến=>NA=NH=\(\frac{1}{2}\)AC (2)
Xét tam giác AMN và tam giác MHN, ta có:
MA=MH(1)
AN=NH(2)
MN là cạnh chung
=>tam giác AMN = tam giác MHN(ccc)=> góc A=góc H=90○
Vậy góc MHN=90○