Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)
\(\Leftrightarrow AH=12\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=15^2-12^2=81\)
hay BH=9(cm)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)
hay CH=16(cm)
mình chỉ tóm tắt thôi nha
a) ta có <Cchung; <H=<A=90
b) ap 1 dung dinh ly Py ta go voi ▲ABC vuong tai A thì BC=10 cm
ta có ▲ABC dồng dang ▲HAC ta có:
\(\frac{HC}{AC}=\frac{AC}{BC}\)
\(\Rightarrow AC^2=HC.BC\)
\(\Rightarrow HC=8^2:10=6,4cm\)
c)xl nha câu c thì mình cm sắp ra rùi bạn suy nghi tiếp nha
cm ▲ABD dong dang ▲HBI (<A=<H=90; B1=<B2)
\(\Rightarrow\frac{AB}{HB}=\frac{BD}{BI}\)
\(\Rightarrow AB.BI=BD=HB\)
bây giờ thì bạn cm HB=HC(mình chỉ biết tới đây)
thì suy ra dược điều đó
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
a) Xét \(\Delta ABC\) và \(\Delta HAC\) có:
\(\widehat{BAC}=\widehat{AHC}=90^0\)
\(\widehat{ABC}=\widehat{HAC}\) do cùng phụ với góc BAH )
suy ra: \(\Delta ABC~\Delta HAC\)
b) Áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)
\(\Leftrightarrow\)\(BC=\sqrt{100}=10\)
Áp dụng hệ thức lượng ta có:
\(AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8\)cm
\(CH=\frac{AC^2}{BC}=\frac{8^2}{10}=6,4\)cm
\(BH=BC-HC=10-6,4=3,6\)cm
a, Xét tam giác ABC và tam giác HAC có
^BCA _ chung
^BAC = ^AHC = 900
Vậy tam giác ABC ~ tam giác HAC (g.g)
\(\dfrac{AB}{AH}=\dfrac{AC}{HC}\Rightarrow AB.HC=AC.AH\)
b, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=10cm\)
Ta có \(\dfrac{AB}{AH}=\dfrac{BC}{AC}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{24}{5}cm\)
\(\Rightarrow CH=\dfrac{AC.AH}{AB}=\dfrac{\dfrac{8.24}{5}}{6}=\dfrac{32}{5}cm\)