K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2018

a)   Xét   \(\Delta ABC\) và   \(\Delta HAC\) có:

\(\widehat{BAC}=\widehat{AHC}=90^0\)

\(\widehat{ABC}=\widehat{HAC}\)  do cùng phụ với góc BAH )

suy  ra:    \(\Delta ABC~\Delta HAC\)

b)  Áp dụng định lý Pytago ta có:

    \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)

\(\Leftrightarrow\)\(BC=\sqrt{100}=10\)

  Áp dụng hệ thức lượng ta có:

 \(AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8\)cm

\(CH=\frac{AC^2}{BC}=\frac{8^2}{10}=6,4\)cm

  \(BH=BC-HC=10-6,4=3,6\)cm

19 tháng 3 2017

trả lời giúp với ạ đang cần bài gấp 

19 tháng 3 2017

a. xét tam giác ABC và tam giác HAC có

góc ACB= góc HCA ( góc chung)

góc BAC = góc AHC (=90độ)

do đó tam giác ABC đồng dạng với tam giác HAC(g.g)

b. theo bài ra ta có góc BAC=90 độ

suy ra tam giác ABC vuôg tại A

ta lại có AB=6cm, AC=8cm

suy ra AB ^2+ AC^2= BC^2

thay vào ta có  6^2+ 8^2= BC^2

suy ra BC^2= 10^2

suy ra BC = 10 (cm)

Các bạn không cần vẽ hình đâu chỉ cần giải ra thôi1) Cho hình bình hành ABCD E là điểm trên AB. DE kéo dài cắt đường thẳng BC tại FChứng minh tam giác ADE đồng dạng với tam giác BFE2) Cho tam giác ABC vuông góc tại A với AC bằng 3 cm BC bằng 5cm Vẽ đường cao AKChứng minh rằng tam giác ABC đồng dạng với tam giác KBA và AB2 = BK.BC3) Cho tam giác ABC có AB = 15cm AC = 20cm BC = 25 cm. Trên cạnh AB lấy điểm E...
Đọc tiếp

Các bạn không cần vẽ hình đâu chỉ cần giải ra thôi

1) Cho hình bình hành ABCD E là điểm trên AB. DE kéo dài cắt đường thẳng BC tại F

Chứng minh tam giác ADE đồng dạng với tam giác BFE

2) Cho tam giác ABC vuông góc tại A với AC bằng 3 cm BC bằng 5cm Vẽ đường cao AK

Chứng minh rằng tam giác ABC đồng dạng với tam giác KBA và AB= BK.BC

3) Cho tam giác ABC có AB = 15cm AC = 20cm BC = 25 cm. Trên cạnh AB lấy điểm E sao cho AE 18cm trên cạnh AC lấy F sao cho AF = 6 cm

So sánh AE/AC;AF/AB

4) Cho tam giác ABC vuông tại A đường cao AH cắt phân giác BD tại I

Chứng minh rằng a,IA.BH = IH.BA

                                b,Tam giác ABC đồng dạng với tam giác HBA

5) cho tam giác AOB có AB bằng 18 cm OA = 12 cm OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD bằng 3 cm. Qua D kẻ đường thẳng song song với AB cắt AO ở C. Gọi F là giao điểm của AD và BC

Tính độ dài OC;CD

6) Cho tam giác nhọn ABC có AB bằng 12 cm AC bằng 15 cm. Trên các cạnh AB và AC lấy các điểm D và E sao cho AD = 4 cm,AE = 5cm

Chứng minh rằng DE // BC, Từ đó suy ra tam giác ADE đồng dạng với tam giác ABC?

7) Cho tam giác ABC vuông tại A D nằm giữa A và C. Kẻ đường thẳng D vuông góc với BC tại E và cắt AB tại F 

Chứng minh tam giác ADF đồng dạng với tam giác EDC

 

1
13 tháng 2 2018

tính đến hết tết à

23 tháng 4 2019

câu 2:

a)xét tg HBA và ABC có 

góc AHB=BAC=900

góc B chung

=>tg HBA đồng dạng vs tg ABC(g-g)

b) áp dụng pytago vào tg ABC có 

BC2=AB2+AC2

=>BC2=62+82

=>BC2=36+64

=>BC=\(\sqrt{100}=10cm\)

xét tam giác HBA đd vs tg ABC có

\(\frac{BA}{BC}=\frac{HA}{AC}\Rightarrow\frac{6}{10}=\frac{HA}{8}\Rightarrow HA=\frac{6.8}{10}\)

\(\Rightarrow HA=4,8\)

c) theo tính chất đường phân giác, ta có

\(\frac{BD}{DC}=\frac{AB}{AC}\Rightarrow\frac{BD}{DC}=\frac{6}{8}\Rightarrow\frac{BD}{BD+DC}=\frac{6}{8+6}\)

\(\Rightarrow\frac{BD}{BC}=\frac{6}{14}\)\(\Rightarrow\frac{BD}{10}=\frac{6}{14}\Rightarrow BD=\frac{6.10}{14}\approx4.3\)

  

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Ta có: ΔAHB\(\sim\)ΔCAB(cmt)

nên \(\dfrac{AH}{CA}=\dfrac{HB}{AB}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AH}{8}=\dfrac{HB}{6}=\dfrac{6}{10}=\dfrac{3}{5}\)

Suy ra: \(\left\{{}\begin{matrix}\dfrac{AH}{8}=\dfrac{3}{5}\\\dfrac{HB}{6}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\HB=3.6\left(cm\right)\end{matrix}\right.\)

Vậy: AH=4,8cm; HB=3,6cm

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

26 tháng 5 2021

Dài lắm bạn tham khảo.undefinedundefined