Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{BD+CD}{6+8}=\dfrac{10}{14}=\dfrac{5}{7}\)
Do đó: \(BD=\dfrac{30}{7}\left(cm\right)\)
Diện tích tam giác ABD là:
\(S_{ABD}=\dfrac{AH\cdot BD}{2}=\dfrac{4.8\cdot\dfrac{30}{7}}{2}=2.4\cdot\dfrac{30}{7}=\dfrac{72}{7}\left(cm^2\right)\)
\(a,\) Vì \(10^2=6^2+8^2\Leftrightarrow BC^2=AB^2+AC^2\) nên tg ABC vg tại A (PTG đảo)
\(b,\) Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=6,4\left(cm\right)\\AH=\sqrt{3,6\cdot6,4}=4,8\left(cm\right)\end{matrix}\right.\)
\(c,\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{3}{5}\left(t/c.đường.p/g\right)\\ \Rightarrow AD=\dfrac{3}{5}DC\)
Mà \(AD+DC=AC=8\)
\(\Rightarrow\dfrac{8}{5}DC=8\Rightarrow DC=5\left(cm\right)\\ \Rightarrow AD=3\left(cm\right)\)
\(\Rightarrow S_{ABD}=\dfrac{1}{2}AB\cdot AD=\dfrac{1}{2}\cdot6\cdot3=9\left(cm^2\right)\)
\(\Rightarrow S_{BCD}=S_{ABC}-S_{ADB}=\dfrac{1}{2}AB\cdot AC-9=24-9=15\left(cm^2\right)\)
Bài này dễ thôi đây này
Sabc = 1/2 ABx AC = 24 => AB xAC = 48
Tam giác ABC vuông tại A , theeo HTL:
AB.AC = AH.BC => BC= AB.AC: AH = 48:4,8 = 10
Tam giác ABC vuông tại A , theeo py ta go :
AB^2 + AC^2 = BC^2 = 10^2 = 100
(AB + AC)^2 = AB^2 + AC^ 2 + 2AB.AC=100+2.48=196=>AB+AC=CĂN 196=14 (1)
(AB - AC)^ 2 = AB^2 + AC^2 - 2AB.AC = 100 - 2.48 = 100-96 = 4 => AB - AC = CĂN 4 = 2 (2)
Lấy (1)cộng (2)
=> AB + AC + AB - AC = 14 +2 => 2AB = 16 => AB = 8
=> 8 + AC = 14 => AC= 6
\(1,\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)
\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Áp dụng định lý 1 của hệ thức cạnh và đường cao trong ΔvACH
\(AC^2=CH.CB\)
\(8^2=CH.10\)
64=CH.10
CH=\(\frac{64}{10}\)
CH=6,4 cm
SΔAHC=\(\frac{1}{2}CH.AH\)=\(\frac{1}{2}.4,8.6,4=15,36cm^2\)