K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2019

16 tháng 12 2019

Đề bài sai rồi, bạn xem lại. ADCXB

16 tháng 12 2019

Hình bạn tự vẽ nha!

a) Xét 2 \(\Delta\) \(DBC\)\(DEA\) có:

\(DB=DE\left(gt\right)\)

\(\widehat{BDC}=\widehat{EDA}\) (vì 2 góc đối đỉnh)

\(DC=DA\) (vì D là trung điểm của \(AC\))

=> \(\Delta DBC=\Delta DEA\left(c-g-c\right).\)

b) Xét 2 \(\Delta\) \(ABD\)\(CED\) có:

\(AD=CD\) (vì D là trung điểm của \(AC\))

\(\widehat{ADB}=\widehat{CDE}\) (vì 2 góc đối đỉnh)

\(BD=ED\left(gt\right)\)

=> \(\Delta ABD=\Delta CED\left(c-g-c\right)\)

=> \(\widehat{ABD}=\widehat{CED}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AB\) // \(CE.\)

Chúc bạn học tốt!

`@` `\text {dnv4510}`

`a,`

Xét `\Delta ABC:`

`\text {BC > AC > AB (5 cm > 4 cm > 3 cm)}`

`@` Theo định lý quan hệ giữa góc và cạnh đối diện

`=>` $\widehat {A} > \widehat {B} > \widehat {C}$.

`b,`

Ta có: A là trung điểm của BD

`-> \text {AC là đường trung tuyến}` `(1)`

K là trung điểm của BC

`-> \text {DK là đường trung tuyến}` `(2)`

Mà \(\text{AC }\cap\text{ DK = M}\) `(3)`

Từ `(1), (2)` và `(3)`

`-> \text {M là trọng tâm của} \Delta ABC` 

`@` Theo tính chất của trọng tâm trong `\Delta`

\(\text{MC = }\dfrac{2}{3}\text{AC}\)

Mà \(\text{AC = 4 cm}\)

`->`\(\text{MC = }\dfrac{2}{3}\cdot4=\dfrac{8}{3}\left(\text{cm}\right)\)

Vậy, độ dài của MC là `8/3 cm`

`b,`

Ta có: \(\left\{{}\begin{matrix}\text{A là trung điểm của BC}\\\text{AC }\bot\text{ BD}\end{matrix}\right.\)

`->`\(\text{CA là đường trung trực}\)

Ta có: \(\left\{{}\begin{matrix}\text{AC là đường trung trực (hạ từ đỉnh A)}\\\text{AC là đường trung tuyến (hạ từ đỉnh A) }\end{matrix}\right.\)

`@` Theo tính chất của các đường trong `\Delta` với `\Delta` cân

`->` \(\Delta\text{ BDC cân tại C (đpcm).}\)

loading...

a: AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔCBD có

CA,DK là trung tuyến

CA cắt DK tại M

=>M là trọng tâm

=>CM=2/3CA=8/3cm

c: Xét ΔCBD co

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBD cân tại C

a) Áp dụng định lí Pytago vào ΔABC vuông tại A,ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=8^2+6^2=100\)

hay BC=10(cm)
Vậy: BC=10cm

16 tháng 12 2015

a) Xét tam giác ABM và tam giác ADM, có:

BM=DM (gt)

AM chung

góc AMD = góc AMB=90 độ

=> tam giác ABM=tam giác ADM (c-g-c)

b) Vì tam giác ABM= tam giác ADM

=>AMB=AMD =90 độ ( 2 góc tương ứng)

=>AM vuông góc vs BD

c+d) ckua pt làm

=>