K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABCD co

M là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AB=CD và AB//CD

=>CD vuông góc AC

b: AB+BC=AB+AD>BD=2BM

c: góc ABM=góc CDB

mà góc CDB>góc CBM

nên góc ABM>góc CBM

18 tháng 2 2020

Bài 5:

Tgiac ABC vuông cân tại A => góc CBA = 45 độ

Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB

Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC

=> góc D = 45/2 = 22,5 độ

và góc ACD = 22,5 + 45 = 67,5 độ

Vậy số đo các góc của tgiac ACD là ...

Bài 6: 

Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ

Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ

cmtt với tgiac CBE => góc DEB = 70 độ

=> góc DBE = 180-70-70 = 40 độ

Bài 7: 

Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)

Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C

=> đpcm

Bài 8: mai làm hihi

18 tháng 2 2020

bài này dễ sao không biết

9 tháng 8 2019

A B M I K C D

a, Xét △ABC có: \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\)

\(\Rightarrow45^o+70^o+\widehat{ACB}=180^o\)

\(\Rightarrow\widehat{ACB}=65^o\)

b, Xét △ABM và △DCM

Có: MA = MD (giả thiết)

     \(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

      \(BM=MC\)(M là trung điểm của BC)

=> △ABM = △DCM (c.g.c)

=> \(\widehat{ABC}=\widehat{MCD}\)(2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> AB // CD

c, Xét △IMB và △KMC

Có:  \(\widehat{IMB}=\widehat{CMK}\) (đối đỉnh)

        BM = MC (gt)

    \(\widehat{ABC}=\widehat{MCD}\)(cmt)

=> △IMB = △KMC (g.c.g)

=> MI = MK (2 cạnh tương ứng)

Mà M nằm giữa I, K

=> M là trung điểm của IK

8 tháng 7 2019

A B C M

CM :

a) Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A, ta có:

BC2 = AB2 +  AC2

=> AB2 = BC2 - AC2 = 102 - 82 = 100 - 64 = 36

=> AB = 6 (cm)

b) Xét t/giác ABM và t/giác CDM

có: BM = MD (gt)

   \(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)

  AM = CM (gt)

=> t/giác ABM = t/giác CDM (c.g.c)

=> AB = CD (2 cạnh t/ứng)

=> \(\widehat{A}=\widehat{C}\) (2 góc t/ứng)

Mà \(\widehat{A}=90^0\) => \(\widehat{C}=90^0\) => AC \(\perp\)CD

c) Xét t/giác ACD

 Ta có: BC + CD > BD (bất đẳng thức t/giác)

Mà CD = AB và 2BM = BD (vì BD = BM + MD và BM = MD)

=> AB + BC > 2BM

d) Ta có: AB < BC (6 cm < 10cm)

Mà AB = CD

=> CD > BC =>  \(\widehat{MBC}< \widehat{D}\) (quan hệ giữa cạnh và góc đối diện)

Mà \(\widehat{D}=\widehat{ABM}\) (vì t/giác ABM = t/giác CDM)

=> \(\widehat{CBM}< \widehat{ABM}\)

8 tháng 3 2023

Cho tam giác ABC vuông tại A có AB<AC,đường trung tuyến AM. Trên tia đối của tia AM lấy điểm D sao cho M là trung điểm AD.

a) chứng minh tam giác MAB= tam giác MDC và DC song song với AB

b) gọi K là trung điểm AC. Chứng minh tam giác BKD cân 

c) DK cắt BC tại O. Chứng minh CO=2/3CM

d) BK cắt AD tại N. Chứng minh MK vuông góc với NO

 

17 tháng 12 2022

a: Xét ΔABM và ΔCDM có

MA=MC

góc AMB=góc CMD

MB=MD

Do đó: ΔABM=ΔCDM

b: ΔABM=ΔCDM

nên AB=CD và góc ABM=góc CDM

=>AB//CD

=>CE vuông góc với AC

=>AC vuông góc DE

15 tháng 12 2017
nhanh giùm với
16 tháng 12 2017

(Bạn tự vẽ hình giùm)

a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)

DM = BM (gt)

=> \(\Delta ADM\)\(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)

b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

BM = DM (gt)

=> \(\Delta ABM\)\(\Delta CDM\)(c. g. c)

=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)

=> AC _|_ CD (đpcm)

24 tháng 12 2020

góc C nào bạn

 

24 tháng 12 2020

a) ta có △ABC vuông tại A=>góc ABC +góc BCA=90 độ

                                        30 độ+góc BCA=90 độ

                                                  góc BCA=90 độ -30 độ=60 độ

vậy góc BCA = 60 độ

b)Xét △CMD và△BMA có 

CM=MB (Vì M là trung điểm của BC)

góc CMD= góc BMA( 2 góc đối đỉnh )

MA=MD( giả thiết)

=> △CMD =△BMA(c-g-c) hay  △MAB=△MDC

vậy  △ MAB=△MDC

b) ta có △ MAB=△MDC(chứng minh câu a)

=> CD=AB;  góc CDM= góc MAB( 2 góc tương ứng)

hay góc CDA=góc DAB mà 2 góc này là 2 góc so le trong của đường thẳng AD cắt 2 đường thẳng CD và AB

=> CD//AB

ta có MA+MD=AD

MC+MB=BC 

mà MD=MA(giả thiết)

MC=MB( Vì M là trung điểm của BC)

=>AD=BC 

Xét △ACD và △CAB có 

AD=BC(chứng minh trên )

góc ADC= góc CBA

CD=AB(chứng minh trên)

=>△ACD = △CAB( c-g-c)

=> góc CAB=góc ACD

mà góc CAB=90 độ(vì △ ABC vuông tại A)

=>góc ACD=90 độ

=>AC⊥CD  

vậy AC⊥CD  

  c)ta có BC =AD( chứng minh câu b)

mà AM=MD(giả thiết) 

và MC=MB( Vì M là trung điểm của BC)

=>AM=\(\dfrac{BC}{2}\) =>BC=2.AM

vậy BC=2AM