Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AB=AC=8cm
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB=CD
a) Xét ΔABC vuông tại A, có:
BC2=AB2+AC2 ( Định lý Py-Ta-Go)
(=) 102=AB2+82
(=) 100=AB2+64
(=) AB2= 36
(=) AB =6(cm) (do AB >0)
a) Áp dụng định lý Py ta go ta có :
BC2 =AB2 + AC2
=> AB2 = 100 - 64
=> AB = 6 cm
b) Xét ∆BAM và ∆DCM ta có :
BM = MD
AM = MC ( BM là trung tuyến)
BMA = CMD ( đối đỉnh)
=> ∆BAM = ∆DCM (c.g.c)
=> BAC = MCD = 90 độ
=> AC vuông góc với CD (dpcm)
=> AB = CD ( tg ứng )(dpcm)
a) \(AC^2=BC^2-AB^2\)
\(AC^2=10^2-6^2\)
\(AC^2=100-36\)
\(AC^2=64\)
\(AC=8\)
mình vẽ cái hinhf nó ko đc đẹp với chính xác đâu
b) Xét \(\Delta ABM\) và \(\Delta CDM\) ta có
BM = DM ( gt )
M là góc chung
AM = CM ( BN là đường trung tuyến )
Vậy \(\Delta AMB\) = \(\Delta CDM\) ( c.g.c )
\(\Rightarrow\) AB = CD ( 2 góc tương ứng )
a) Xét ΔAMD và Δ CMB có :
MA = MC ( M là trung điểm của AC )
Góc AMD = góc CMB ( đối đỉnh )
MB = MD ( gt)
=> ΔAMD = Δ CMB ( c.g.c )
=> AD = BC ( 2 cạnh tương ứng )
*Xét Δv ABM và Δv CDM có :
MB = MD ( gt)
Góc AMB = góc CMD ( đối đỉnh )
=> Δ vABM = Δv CDM ( ch - gn)
=> Góc BAM = góc DCM ( 2 góc tương ứng )
mà góc BAM = 90 độ
=> Góc DCM = 90 độ
a)Xét tam giác ABM và tam giác CBM có:
BM=MD(gt)
góc BMA=góc DMC(đđ)
AM=CM(gt)
Suy ra 2 tam giác này băng nhau(c.g.c)
Suy ra AB=CD(2 cạnh tương ứng)
a: Xét ΔMAB và ΔMCD co
MA=MC
góc AMB=góc CMD
MB=MD
=>ΔMAB=ΔMCD
=>AB=CD và góc MAB=góc MCD
=>AB//CD
=>AC vuông góc DC
b: Xét tứ giac ABCD có
M là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AD//BC và AD=BC
a: Xét tứ giác ABCD co
M là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AB=CD và AB//CD
=>CD vuông góc AC
b: AB+BC=AB+AD>BD=2BM
c: góc ABM=góc CDB
mà góc CDB>góc CBM
nên góc ABM>góc CBM
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AB=CD và AB//DC
=>DC vuông góc CA
b: AB+BC=CB+CD>BD=2BM
c: CB>CD
=>góc CBM<góc CDM=góc ABM
a: \(AC=\sqrt{20^2-12^2}=16\left(cm\right)\)
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó; ABCD là hình bình hành
Suy ra: AB=CD và AB//CD
hay AC⊥CD
CM :
a) Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2
=> AB2 = BC2 - AC2 = 102 - 82 = 100 - 64 = 36
=> AB = 6 (cm)
b) Xét t/giác ABM và t/giác CDM
có: BM = MD (gt)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
AM = CM (gt)
=> t/giác ABM = t/giác CDM (c.g.c)
=> AB = CD (2 cạnh t/ứng)
=> \(\widehat{A}=\widehat{C}\) (2 góc t/ứng)
Mà \(\widehat{A}=90^0\) => \(\widehat{C}=90^0\) => AC \(\perp\)CD
c) Xét t/giác ACD
Ta có: BC + CD > BD (bất đẳng thức t/giác)
Mà CD = AB và 2BM = BD (vì BD = BM + MD và BM = MD)
=> AB + BC > 2BM
d) Ta có: AB < BC (6 cm < 10cm)
Mà AB = CD
=> CD > BC => \(\widehat{MBC}< \widehat{D}\) (quan hệ giữa cạnh và góc đối diện)
Mà \(\widehat{D}=\widehat{ABM}\) (vì t/giác ABM = t/giác CDM)
=> \(\widehat{CBM}< \widehat{ABM}\)
Cho tam giác ABC vuông tại A có AB<AC,đường trung tuyến AM. Trên tia đối của tia AM lấy điểm D sao cho M là trung điểm AD.
a) chứng minh tam giác MAB= tam giác MDC và DC song song với AB
b) gọi K là trung điểm AC. Chứng minh tam giác BKD cân
c) DK cắt BC tại O. Chứng minh CO=2/3CM
d) BK cắt AD tại N. Chứng minh MK vuông góc với NO