Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AC=\sqrt{10^2-8^2}=6\left(cm\right)\)
Xét ΔBAC có AC<AB<BC
nên \(\widehat{B}< \widehat{C}< \widehat{A}\)
b: XétΔABD và ΔCED có
DA=DC
\(\widehat{ADB}=\widehat{CDE}\)
DB=DE
Do đó: ΔABD=ΔCED
5:
a: ΔABC cân tại A
mà AH là trung tuyến
nên AH vuông góc BC
BH=CH=4cm
=>AH=căn 10^2-4^2=2*căn 21(cm)
b: Xét ΔIBH và ΔIAD có
góc IBH=góc IAD
IB=IA
góc BIH=góc AID
=>ΔIBH=ΔIAD
=>AD=BH=HC
a: BC=căn 3^2+4^2=5cm
AB<AC<BC
=>góc C<góc B<góc A
b: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AB//CD
=>CD vuông góc CA
c: CM=1/2CA=2cm
Xét ΔCBD có
CM,BN là trung tuyến
CM cắt BN tại H
=>H là trọng tâm
=>CH=2/3CM=2/3*2=4/3(cm)
d: Xét ΔDBC có
DKlà trung tuyến
H là trọng tâm
=>D,K,H thẳng hàng
A) Vì tam giác ABC vuông tại A nên ta có :
AB2+AC2=BC2AB2+AC2=BC2
⇔AC2=BC2−AB2⇔AC2=BC2−AB2
⇔AC2=52−32⇔AC2=52−32
⇔AC2=25−9⇔AC2=25−9
⇔AC2=16⇔AC2=16
⇔AC=4
a: AB<AC<BC
=>góc C<góc B<góc A
b: Xet ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
=>ΔABC=ΔADC
=>CB=CD
=>ΔCBD cân tại C
c: Xet ΔCBD có
CA,BE là trung tuyến
CA căt EB tại I
=>I là trọng tâm
=>DI đi qua trung điểm của BC