Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Vậy: AC=4cm
5:
a: ΔABC cân tại A
mà AH là trung tuyến
nên AH vuông góc BC
BH=CH=4cm
=>AH=căn 10^2-4^2=2*căn 21(cm)
b: Xét ΔIBH và ΔIAD có
góc IBH=góc IAD
IB=IA
góc BIH=góc AID
=>ΔIBH=ΔIAD
=>AD=BH=HC
a) Áp dunhj định lý Py-ta-go vào tam giác vuông ABC ta có:
AB2 + AC2 = BC2
\(\Leftrightarrow\)\(BC^2=3^2+4^2=25\)
\(\Leftrightarrow\)\(BC=\sqrt{25}=5\)
b) Xét tam giác ABM và tam giác CDM có:
BM = DM (gt)
góc AMB = góc CMD (dđ)
MA = MC (gt)
suy ra: tam giác ABM = tam giác CDM (c.g.c)
suy ra: góc BAM = góc DCM = 900
suy ra: DC vuông góc với AC
Áp dụng định lý Pytago ta có:
AB2+AC2=BC2
=>BC2=32+42=25
=>BC=\(\sqrt{25}\)=5
b)Xét tam giác ADM và tam giác CDM có:
BM=DM(gt)
góc AMD= góc CMD(đối đỉnh)
MA=MC(gt)
=>tam giác ABM = tam giác CDM(c.g.c)
=>góc BAM= góc DCM =90o
=>DC là vuông góc với AC
a: \(BC=\sqrt{6^2+3^2}=3\sqrt{5}\left(cm\right)\)
\(BM=\sqrt{6^2+1.5^2}=\dfrac{3\sqrt{17}}{2}\left(cm\right)\)
b: Xét tứ giác ABCD có
M là trung điểm của BD
M là trung điểm của AC
Do đó: ABCD là hình bình hành
Suy ra: AB=CD và CD//AB
hay CD\(\perp\)AC
a,Có BC^2=5^2=25
AB^2+AC^2=3^2+4^2=25
suy ra BC^2=AB^2+AC^2
Theo ĐL Pitago đảo thì tam giác ABC vuông tại A.
a) Theo định lí Pi-ta-go ta có
AB^2+AC^2=BC^2
=> 3^2+4^2=BC^2
=> 9+16=BC^2
=> BC^2=25
=> BC=căn 25
=> BC=5
b)
Xét tam giác AMB và tam giác CMD có
AM=MC (GT)
BM=MD (GT)
Góc AMB= góc DMC (đối đỉnh)
=> tam giác AMB=tam giác CDM(cạnh-góc-cạnh)
=>góc BAM=góc MCD (=90 độ)
c)Xét tam giác vuông AMB
Theo định lí Pi -ta-go ta có
AB^2+AM^2=BM^2
3^2+2^2=BM^2
9+4=BM^2
=>BM^2=13
=>BM=căn 13
=>2BM=2* căn 13
Mà AB+BC=3+5=8
Do 2*căn 13<8
=>2BM<8
d)chịu
phần a,b,c tương đối đơn giản nên em tự chứng minh nhé
phần d : thì cũng ở mức độ khá một chút: gợi ý cho em nhé
chứng minh: góc D = góc ABD (1) ( vì tam giác MBA = Tam giác MDC ( c.g.c) )
xét tam giác BCD có : BC > CD ( 5cm > 3cm )=> góc D > Góc CBD hay góc D > góc CBM (2)
Từ (1) và (2) => đpcm
A) Vì tam giác ABC vuông tại A nên ta có :
AB2+AC2=BC2AB2+AC2=BC2
⇔AC2=BC2−AB2⇔AC2=BC2−AB2
⇔AC2=52−32⇔AC2=52−32
⇔AC2=25−9⇔AC2=25−9
⇔AC2=16⇔AC2=16
⇔AC=4