K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Áp dụng định lý Pitago:

`AB^2  + AC^2 = BC^2`

`=> 25 + AC^2 = 169`

`=> AC^2 = 144`

`=> sqrt 144  = 12`.

b. Áp dụng định lý Pytago ta có:

`AB^2 + AC^2 = BC^2`

`16 + 49 = BC^2`

`BC^2 = 65`

`BC  = sqrt 65`.

13 tháng 5 2022

Áp dụng định lí Pitago trong tam giác ABC vuông tại A

AC = BC2 + AB2

       = 132 + 52    

        = \(\sqrt{194}\)  = 14 cm

Áp dụng định lí Pitago trong tam giác ABC cân tại A

BC = AB2  + AC2

       = 42  + 72  

       = \(\sqrt{65}\) = 8 cm

23 tháng 1 2017

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

23 tháng 1 2017

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

23 tháng 12 2020

a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E

có: BD là cạnh chung

góc ABD = góc EBD (gt)

\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)⇒ΔABD=ΔEBD(ch−gn)

b) ta có: \Delta ABD=\Delta EBD\left(pa\right)ΔABD=ΔEBD(pa)

=> AB = EB = 6 cm ( 2 cạnh tương ứng)

=> EB = 6 cm

Xét tam giác ABC vuông tại Acó: AB^2+AC^2=BC^2\left(py-ta-go\right)AB2+AC2=BC2(py−ta−go)

thay số: 6^2+8^2=BC^262+82=BC2

          \Rightarrow BC^2=100⇒BC2=100

              \Rightarrow BC=10cm⇒BC=10cm

mà E\in BCE∈BC

=> EB + EC = BC

thay số: 6 + EC = 10

                  EC = 10 - 6

               => EC = 4 cm

c) ta có: \Delta ABD=\Delta EBD\left(pa\right)ΔABD=ΔEBD(pa)

=> AD =  ED ( 2 cạnh tương ứng)

    AB = EB ( 2 cạnh tương ứng) (1)

Xét tam giác ADI vuông tại A và tam giác EDC vuông tại E

có: AD = ED ( chứng minh trên)

góc ADI = góc EDC ( đối đỉnh)

\Rightarrow\Delta ADI=\Delta EDC\left(cgv-gn\right)⇒ΔADI=ΔEDC(cgv−gn)

=> AI = EC ( 2 cạnh tương ứng)(2)

Từ (1);(2) => AB + AI = EB + EC

               => BI = BC

              => tam giác BIC cân tại B ( định lí tam giác cân)

d) ta có: \Delta ABD=\Delta EBD\left(pa\right)ΔABD=ΔEBD(pa)

=> AD = ED ( 2 cạnh tương ứng) (1)

Xét tam giác EDC vuông tại E

có: ED < DC ( định lí cạnh góc vuông, cạnh huyền) (2)

Từ (1);(2) => AD <DC

 

21 tháng 3 2022

C

đề bài sai nha

AC=AB=7 

Mà AB+AC=49

Vô lý

19 tháng 3 2020

Ta có AB = ( 49 + 7 ) : 2 = 28 ( cm )

AC = 49 - 28 = 21 ( cm )

Trong tam giác ABC  , áp dụng định lí Py - ta - go ta có :

 AB2 + AC2 = BC2

-> 282 + 212 = BC2

-> BC2 = 1255

-> BC = \(\sqrt{1255}\)= 35 ( cm )

 Vậy BC = 35 cm

26 tháng 7 2021

AB là 

( 49 + 7 ) : 2 = 28 

AC là 

28 - 7 = 21 

Xét tam giác ABC vuông tại A 

AB^2 + AC^2 = BC^2 

21^2 + 28^2 = BC^2 

BC^2 = 1225 

BC = 35 

NM
26 tháng 7 2021

ta có 

\(BC^2=AB^2+AC^2=\frac{\left(AC+AB\right)^2}{2}+\frac{\left(AC-AB\right)^2}{2}=\frac{49^2+7^2}{2}=1225\)

Vậy \(BC=\sqrt{1225}=35cm\)

23 tháng 1 2022

Xét tg ABC vuông tại A, có:

a. \(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(=>BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\sqrt{8}\right)^2+\left(\sqrt{17}\right)^2}=5\left(cm\right)\)

b. \(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(=>BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{3}{5}\right)^2+\left(\dfrac{4}{5}\right)^2}=1\left(cm\right)\)

23 tháng 1 2022

a, Xét Tam giác ABC vuôgn tại A

Theo định lí Pi-ta-go, ta có:

 \(AB^2+AC^2=BC^2\)

Hay \(\sqrt{8}+\sqrt{17}=\sqrt{25}=5\left(cm\right)\)

Vậy BC = 5 (cm)

b, Xét tam giác ABC vuôgn tại A

THeo định lí Pi-ta-go, ta có :

\(AB^2+AC^2=BC^2\)

hay \(\left(\dfrac{3}{5}\right)^2+\left(\dfrac{4}{5}\right)^2=\sqrt{\dfrac{9}{25}+\dfrac{16}{25}=1}\)

Vậy BC = 1cm

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

=>góc BAH=góc CAH

b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

Do đó: ΔADH=ΔAEH

=>AD=AE

=>ΔADE cân tại A