Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo định lí pitago trong
Trong tam giác vuông ABC có :
BC2 = AB2 + AC2
BC2 =52 + 122 =15+144=169
suy ra : BC = /169 =13 (cm )
b)
Trong tam giác vuông ABC có:
 = 90 độ (tam giác ABC vuông tại A)
GB = GC = 45 độ ( tính chất của tam giác vuông)
suy ra : Â >GB = GC
c)
Xét tam giác AHN và tam giác CIN có :
GN1 = GN2 ( đối đỉnh )
NH = NI ( gt)
NA = NC ( N là trung điểm của AC )
Suy ra :tam giác AHN = tam giác CIN ( c-g-c)
d)
Suy ra :GH1 = GC1( Tam giác AHN = Tam giác CIN)
Suy ra :GH2 = GC2 = 45 độ
Xét tam giác AHE và tam giác ICE có :
GH = GC ( C/M trên )
AH = CI ( Tam giác AHN = tam giác CIN )
HE = CE ( E là trung điểm của HC )
suy ra : tam giác AHE = tam giác ICE ( c-g-c)
suy ra :
AE = IE ( 2 cạnh tương ứng )
Suy ra :
tam giác AEI cân tại I
Mình làm vậy ko biết có đúng ko nữa ? nhưng mình đoán là zậy đấy
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
Vậy: BC=5cm
Xét ΔABD vuông tại A
ΔEBD vuông tại E
CÓ : BD : CẠNH HUYỀN CHUNG
\(\widehat{ABD}=\widehat{EBD}\) (D LÀ TIA PHÂN GIÁC CỦA GÓC B)
⇒ΔABD= ΔEBD (CẠNH HUYỀN-CẠNH GÓC VUÔNG)
C)XÉT ΔDAI VUÔNG TẠI A
ΔDEC VUÔNG TẠI E
CÓ: \(\widehat{A}=\widehat{E}\)(GT)
AD=CD(ΔABD= ΔEBD)
\(\widehat{ADI}=\widehat{EDC}\) (ĐỐI ĐỈNH)
⇒ΔDAI=ΔDEC (G-C-G)
⇒DI = CD
⇒ΔIDC CÂN TẠI D
a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E
có: BD là cạnh chung
góc ABD = góc EBD (gt)
\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)⇒ΔABD=ΔEBD(ch−gn)
b) ta có: \Delta ABD=\Delta EBD\left(pa\right)ΔABD=ΔEBD(pa)
=> AB = EB = 6 cm ( 2 cạnh tương ứng)
=> EB = 6 cm
Xét tam giác ABC vuông tại Acó: AB^2+AC^2=BC^2\left(py-ta-go\right)AB2+AC2=BC2(py−ta−go)
thay số: 6^2+8^2=BC^262+82=BC2
\Rightarrow BC^2=100⇒BC2=100
\Rightarrow BC=10cm⇒BC=10cm
mà E\in BCE∈BC
=> EB + EC = BC
thay số: 6 + EC = 10
EC = 10 - 6
=> EC = 4 cm
c) ta có: \Delta ABD=\Delta EBD\left(pa\right)ΔABD=ΔEBD(pa)
=> AD = ED ( 2 cạnh tương ứng)
AB = EB ( 2 cạnh tương ứng) (1)
Xét tam giác ADI vuông tại A và tam giác EDC vuông tại E
có: AD = ED ( chứng minh trên)
góc ADI = góc EDC ( đối đỉnh)
\Rightarrow\Delta ADI=\Delta EDC\left(cgv-gn\right)⇒ΔADI=ΔEDC(cgv−gn)
=> AI = EC ( 2 cạnh tương ứng)(2)
Từ (1);(2) => AB + AI = EB + EC
=> BI = BC
=> tam giác BIC cân tại B ( định lí tam giác cân)
d) ta có: \Delta ABD=\Delta EBD\left(pa\right)ΔABD=ΔEBD(pa)
=> AD = ED ( 2 cạnh tương ứng) (1)
Xét tam giác EDC vuông tại E
có: ED < DC ( định lí cạnh góc vuông, cạnh huyền) (2)
Từ (1);(2) => AD <DC