Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hic em chào chị em mới lớp 5 em thật vô lễ qá xin lỗi chị
Bạn vẽ hình ra nhé!
Do tam giác ABD vuông cân tại A => góc DAM + góc BAH = 90º. Trong tam giác vuông ABH có góc ABH + góc BAH = 90º => góc DAM = góc ABH (cùng phụ với một góc bằng nhau)
Xét tam giác vuông ADM và tam giác vuông BAH có:
AD = AB (gt)
góc DAM = góc ABH (cmt)
=> tam giác ADM = tam giác BAH (cạnh huyền - góc nhọn)
=> DM = AH
Cmtt ta có: tam giác ANE = tam giác CHA => EN = AH
=> DM = EN (cùng bằng AH)
Lại có: DM // EN (cùng _|_ AH) mà DM = EN (cmt) => tứ giác DMEN là hình bình hành => MN cắt DE tại trung điểm mỗi đường hay MN đi qua trung điểm của DE.
Chúc bạn học giỏi!
tk nha bạn
thank you bạn
(^_^)
Do tam giác ABD vuông cân tại A => góc DAM + góc BAH = 90º. Trong tam giác vuông ABH có góc ABH + góc BAH = 90º => góc DAM = góc ABH (cùng phụ với một góc bằng nhau)
Xét tam giác vuông ADM và tam giác vuông BAH có:
AD = AB (gt)
góc DAM = góc ABH (cmt)
=> tam giác ADM = tam giác BAH (cạnh huyền - góc nhọn)
=> DM = AH
Cmtt ta có: tam giác ANE = tam giác CHA => EN = AH
=> DM = EN (cùng bằng AH)
Lại có: DM // EN (cùng _|_ AH) mà DM = EN (cmt) => tứ giác DMEN là hình bình hành => MN cắt DE tại trung điểm mỗi đường hay MN đi qua trung điểm của DE.
Dễ nhưng dài nên lười đánh máy quá:")
a) Ta có: \(\widehat{BAH}+\widehat{ABH}=90^o\)
Mà \(\widehat{DAI}+\widehat{DAB}+\widehat{BAH}=180^O\)
\(\Leftrightarrow\widehat{DAI}+90^o+\widehat{BAH}=180^O\)
\(\Leftrightarrow\widehat{DAI}+\widehat{BAH}=90^o\)
=> \(\widehat{DAI}=\widehat{ABH}\)( cùng phụ BAH)
Xét ∆ABH và ∆DAI:
AB=AD(∆ABD vuông cân tại A)
\(\widehat{AHB}=\widehat{DIA}=90^o\)
\(\widehat{ABH}=\widehat{DAI}\left(cmt\right)\)
=>∆ABH=∆DAI (ch.gn)
b) Theo câu a: ∆ABH=∆DAI
=> AH=DI (2 cạnh t/ứ)(1)
Cmtt câu a ta được ∆AKE=∆CHA
=> EK=AH (2 canh t/ứ) (2)
Từ (1) và (2) suy ra DI=EK
c) Gọi giao điểm của DE và HA là F
Xét ∆FID và ∆FKE:DI=K (cm ở câu b)
\(\widehat{FID}=\widehat{FKE}=90^o\)
\(\widehat{IFD}=\widehat{KFE}\) (2 góc đối đỉnh)
=> ∆FID=∆FKE (cgv.gn)
=> DF=EF (2 canh t/ứ)
=> F là trung điểm của DE
=> AH cắt DE tại trung điểm của DE
a: Vẽ DI,EK vuông góc AH
Xét ΔIDA và ΔHAB có
góc DIA=góc AHB
AD=AB
góc A1=góc ABH(=90 độ-góc A2)
=>ΔIDA=ΔHAB
=>ID=AH(1)
Xét ΔKAE và ΔHCA có
góc EKA=góc AHC
AE=AC
góc EAK=góc HCA
=>ΔKAE=ΔHCA
=>AH=EK=DI
Gọi giao của AH và DE là N
Xét ΔDIN và ΔKEN co
góc DIN=góc EKN
DI=EK
góc ENK=góc DNK
=>ΔDIN=ΔKEN
=>EN=DN
=>N là trung điểm của DE
b: Lấy F đối xứng A qua M
Xet ΔAMB và ΔFMC có
MA=MF
góc AMB=góc FMC
MB=MC
=>ΔAMB=ΔFMC
=>AB=CF và góc B=góc FCM
=>góc ACF=góc ACB+góc B=180 độ-góc BAC
Gọi giao của AM và DE là I
Xet ΔACF và ΔEAD có
AC=ED
CF=AD
góc EAD=góc ACF
=>ΔACF=ΔEAD
=>AF=DE
=>AM=1/2DE
ΔAMB=ΔFMC
=>góc BAM=góc MFC
ΔACF=ΔEAD
=>góc MFC=góc EDA
=>góc BAM=góc EDA
=>góc EDA+góc DAI=90 độ
=>AM vuông góc DE